論文の概要: Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework
- arxiv url: http://arxiv.org/abs/2403.11202v2
- Date: Wed, 10 Jul 2024 09:06:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:29:48.877311
- Title: Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework
- Title(参考訳): 必要なデータはすべて: 自動設計データ拡張フレームワークによるチップ設計のためのLCMの微調整
- Authors: Kaiyan Chang, Kun Wang, Nan Yang, Ying Wang, Dantong Jin, Wenlong Zhu, Zhirong Chen, Cangyuan Li, Hao Yan, Yunhao Zhou, Zhuoliang Zhao, Yuan Cheng, Yudong Pan, Yiqi Liu, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li, Xiaowei Li,
- Abstract要約: 本稿では,Verilog と EDA スクリプトに適合する高ボリュームかつ高品質な自然言語を生成する自動設計データ拡張フレームワークを提案する。
Verilog生成の精度は現在の最先端のオープンソースVerilog生成モデルを超え、同じベンチマークで58.8%から70.6%に増加した。
- 参考スコア(独自算出の注目度): 50.02710905062184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models have demonstrated their potential for automated generation of hardware description language (HDL) code from high-level prompts. Researchers have utilized fine-tuning to enhance the ability of these large language models (LLMs) in the field of Chip Design. However, the lack of Verilog data hinders further improvement in the quality of Verilog generation by LLMs. Additionally, the absence of a Verilog and Electronic Design Automation (EDA) script data augmentation framework significantly increases the time required to prepare the training dataset for LLM trainers. This paper proposes an automated design-data augmentation framework, which generates high-volume and high-quality natural language aligned with Verilog and EDA scripts. For Verilog generation, it translates Verilog files to an abstract syntax tree and then maps nodes to natural language with a predefined template. For Verilog repair, it uses predefined rules to generate the wrong verilog file and then pairs EDA Tool feedback with the right and wrong verilog file. For EDA Script generation, it uses existing LLM(GPT-3.5) to obtain the description of the Script. To evaluate the effectiveness of our data augmentation method, we finetune Llama2-13B and Llama2-7B models using the dataset generated by our augmentation framework. The results demonstrate a significant improvement in the Verilog generation tasks with LLMs. Moreover, the accuracy of Verilog generation surpasses that of the current state-of-the-art open-source Verilog generation model, increasing from 58.8% to 70.6% with the same benchmark. Our 13B model (ChipGPT-FT) has a pass rate improvement compared with GPT-3.5 in Verilog generation and outperforms in EDA script (i.e., SiliconCompiler) generation with only 200 EDA script data.
- Abstract(参考訳): 大規模言語モデルの最近の進歩は、ハイレベルなプロンプトからハードウェア記述言語(HDL)コードの自動生成の可能性を示している。
研究者は、チップデザインの分野でこれらの大きな言語モデル(LLM)の能力を高めるために微調整を利用している。
しかし、Verilogデータの欠如は、LLMによるVerilog生成の品質向上を妨げている。
さらに、Verilog and Electronic Design Automation (EDA)スクリプトデータ拡張フレームワークが存在しないことで、LLMトレーナーのトレーニングデータセットを作成するのに必要な時間が大幅に増加する。
本稿では,Verilog と EDA スクリプトに適合する高ボリュームかつ高品質な自然言語を生成する自動設計データ拡張フレームワークを提案する。
Verilog生成では、Verilogファイルを抽象構文木に変換し、事前に定義されたテンプレートでノードを自然言語にマッピングする。
Verilogの修復には、定義済みのルールを使用して、間違ったVerilogファイルを生成し、EDA Toolのフィードバックと正しいVerilogファイルとをペアリングする。
EDA Script 生成では、既存の LLM(GPT-3.5) を使用して Script の記述を取得する。
Llama2-13B モデルと Llama2-7B モデルを解析し,データ拡張手法の有効性を評価する。
その結果,LLMを用いたVerilog生成タスクの大幅な改善が示された。
さらに、Verilog生成の精度は現在の最先端のオープンソースVerilog生成モデルを超え、同じベンチマークで58.8%から70.6%に増加した。
我々の13Bモデル(ChipGPT-FT)は、Verilog 生成の GPT-3.5 と比較してパスレートが改善し、200 EDA スクリプトデータしか持たない EDA スクリプト(SiiliconCompiler) 生成の成績が向上した。
関連論文リスト
- VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool [4.027984601764008]
We propose VerilogCoder, a system of multiple Artificial Intelligence (AI) agent for Verilog code generation。
提案手法は、構文的に94.2%、機能的に正当なVerilogコードを生成する。
論文 参考訳(メタデータ) (2024-08-15T20:06:06Z) - CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization [37.4446786461791]
本稿では,オープンソースの命令調整型Verilog生成用LLMであるCodeVを紹介する。
CodeVは以前のオープンソースSOTAを14.4%(VerilogEvalのBetterV)と11.3%(RTLCoder in RTLLM)で相対的に上回っている。
論文 参考訳(メタデータ) (2024-07-15T03:57:20Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - A Multi-Expert Large Language Model Architecture for Verilog Code Generation [5.159745269633967]
本稿では,Verilog Code Generation (MEV-LLM) のための,革新的なマルチエキスパート LLM アーキテクチャを提案する。
我々のアーキテクチャは、複数のLCMを一意に統合しており、それぞれが、異なるレベルの設計複雑さに対して分類されたデータセットで微調整されている。
実験から得られた実証的な証拠は、構文的に、機能的に正しい生成したVerilog出力の比率において顕著な改善点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-11T16:58:29Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - BetterV: Controlled Verilog Generation with Discriminative Guidance [11.162807308782751]
本稿では,処理されたドメイン固有ランタイム上での大規模言語モデル(LLM)の微調整を行うVerilog生成フレームワークであるBetterVを提案する。
BetterV は構文的にも機能的にも Verilog を生成する機能を備えており、VerilogEval ベンチマークでは GPT-4 よりも優れている。
論文 参考訳(メタデータ) (2024-02-03T08:00:12Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Benchmarking Large Language Models for Automated Verilog RTL Code
Generation [21.747037230069854]
有用なVerilogを生成するために,大規模言語モデル(LLM)を特徴付ける。
機能解析のためのテストベンチと,Verilogコードの構文をテストするフローからなる評価フレームワークを構築した。
その結果,LLMの微調整結果は,構文的に正しいコードを生成する能力が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-13T16:34:39Z) - Fine-Grained Scene Graph Generation with Data Transfer [127.17675443137064]
シーングラフ生成(SGG)は、画像中の三つ子(オブジェクト、述語、オブジェクト)を抽出することを目的としている。
最近の研究は、SGGを着実に進歩させ、高レベルの視覚と言語理解に有用なツールを提供している。
そこで本研究では,プレー・アンド・プラグ方式で適用可能で,約1,807の述語クラスを持つ大規模SGGに拡張可能な,内部・外部データ転送(IETrans)手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T12:26:56Z) - Self-Supervised Log Parsing [59.04636530383049]
大規模ソフトウェアシステムは、大量の半構造化ログレコードを生成する。
既存のアプローチは、ログ特化や手動ルール抽出に依存している。
本稿では,自己教師付き学習モデルを用いて解析タスクをマスク言語モデリングとして定式化するNuLogを提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。