Improved Q-learning based Multi-hop Routing for UAV-Assisted Communication
- URL: http://arxiv.org/abs/2408.09109v1
- Date: Sat, 17 Aug 2024 06:24:31 GMT
- Title: Improved Q-learning based Multi-hop Routing for UAV-Assisted Communication
- Authors: N P Sharvari, Dibakar Das, Jyotsna Bapat, Debabrata Das,
- Abstract summary: This paper proposes a novel, Improved Q-learning-based Multi-hop Routing (IQMR) algorithm for optimal UAV-assisted communication systems.
Using Q(lambda) learning for routing decisions, IQMR substantially enhances energy efficiency and network data throughput.
- Score: 4.799822253865053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing effective Unmanned Aerial Vehicle(UAV)-assisted routing protocols is challenging due to changing topology, limited battery capacity, and the dynamic nature of communication environments. Current protocols prioritize optimizing individual network parameters, overlooking the necessity for a nuanced approach in scenarios with intermittent connectivity, fluctuating signal strength, and varying network densities, ultimately failing to address aerial network requirements comprehensively. This paper proposes a novel, Improved Q-learning-based Multi-hop Routing (IQMR) algorithm for optimal UAV-assisted communication systems. Using Q(\lambda) learning for routing decisions, IQMR substantially enhances energy efficiency and network data throughput. IQMR improves system resilience by prioritizing reliable connectivity and inter-UAV collision avoidance while integrating real-time network status information, all in the absence of predefined UAV path planning, thus ensuring dynamic adaptability to evolving network conditions. The results validate IQMR's adaptability to changing system conditions and superiority over the current techniques. IQMR showcases 36.35\% and 32.05\% improvements in energy efficiency and data throughput over the existing methods.
Related papers
- Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks [16.0018681576301]
We propose a novel algorithmic strategy called Quantile-constrained Inference (QIC)
QIC makes joint, high-quality, swift decisions on all the above aspects of the system.
Our results confirm that QIC matches the optimum and outperforms its alternatives by over 80%.
arXiv Detail & Related papers (2024-10-22T06:12:04Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way.
Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs.
We propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation.
arXiv Detail & Related papers (2023-12-08T01:57:10Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
This paper investigates the quality of service for semantic communication networks, including the semantic quantization efficiency (SQE) and transmission latency.
A problem maximizing the overall effective SC-QoS is formulated by jointly the transmit beamforming the base station, the bits semantic representation the subchannel assignment, and the semantic resource allocation.
Our design can effectively combat semantic noise and achieve superior performance in wireless communications compared to several benchmark schemes.
arXiv Detail & Related papers (2023-12-02T09:12:12Z) - Adaptive Dynamic Programming for Energy-Efficient Base Station Cell
Switching [19.520603265594108]
Energy saving in wireless networks is growing in importance due to increasing demand for evolving new-gen cellular networks.
We propose an approximate dynamic programming (ADP)-based method coupled with online optimization to switch on/off the cells of base stations to reduce network power consumption.
arXiv Detail & Related papers (2023-10-05T14:50:12Z) - An Intelligent SDWN Routing Algorithm Based on Network Situational
Awareness and Deep Reinforcement Learning [4.085916808788356]
This article introduces an intelligent routing algorithm (DRL-PPONSA) based on deep reinforcement learning with network situational awareness.
Experimental results show that DRL-PPONSA outperforms traditional routing methods in network throughput, delay, packet loss rate, and wireless node distance.
arXiv Detail & Related papers (2023-05-12T14:18:09Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Fully-echoed Q-routing with Simulated Annealing Inference for Flying
Adhoc Networks [6.3372141874912735]
We propose a full-echo Q-routing algorithm with a self-adaptive learning rate.
Our method exhibits a reduction in the energy consumption ranging from 7% up to 82%, as well as a 2.6 fold gain in successful packet delivery rate, compared to the state of the art Q-routing protocols.
arXiv Detail & Related papers (2021-03-23T22:28:26Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
A communication enabled indoor intelligent robots (IRs) service framework is proposed.
Lego modeling method is proposed, which can deterministically describe the indoor layout and channel state.
The investigated radio map is invoked as a virtual environment to train the reinforcement learning agent.
arXiv Detail & Related papers (2020-11-23T21:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.