論文の概要: TableBench: A Comprehensive and Complex Benchmark for Table Question Answering
- arxiv url: http://arxiv.org/abs/2408.09174v1
- Date: Sat, 17 Aug 2024 11:40:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:01:27.368361
- Title: TableBench: A Comprehensive and Complex Benchmark for Table Question Answering
- Title(参考訳): TableBench: テーブル質問回答のための総合的で複雑なベンチマーク
- Authors: Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xinrun Du, Di Liang, Daixin Shu, Xianfu Cheng, Tianzhen Sun, Guanglin Niu, Tongliang Li, Zhoujun Li,
- Abstract要約: 本稿では,産業シナリオにおける大規模言語モデル(LLM)の適用について検討する。
本稿では,テーブル質問応答機能(TableQA)の4大カテゴリに18のフィールドを含む,包括的で複雑なベンチマークTableBenchを提案する。
TableBenchで実施された大規模な実験は、オープンソースのLLMとプロプライエタリなLLMの両方に、現実世界の要求を満たすための大きな改善の余地があることを示唆している。
- 参考スコア(独自算出の注目度): 33.64465594140019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have markedly enhanced the interpretation and processing of tabular data, introducing previously unimaginable capabilities. Despite these achievements, LLMs still encounter significant challenges when applied in industrial scenarios, particularly due to the increased complexity of reasoning required with real-world tabular data, underscoring a notable disparity between academic benchmarks and practical applications. To address this discrepancy, we conduct a detailed investigation into the application of tabular data in industrial scenarios and propose a comprehensive and complex benchmark TableBench, including 18 fields within four major categories of table question answering (TableQA) capabilities. Furthermore, we introduce TableLLM, trained on our meticulously constructed training set TableInstruct, achieving comparable performance with GPT-3.5. Massive experiments conducted on TableBench indicate that both open-source and proprietary LLMs still have significant room for improvement to meet real-world demands, where the most advanced model, GPT-4, achieves only a modest score compared to humans.
- Abstract(参考訳): 近年のLLM(Large Language Models)の進歩により、表形式のデータの解釈と処理が大幅に強化され、以前は想像できない機能が導入されている。
これらの成果にもかかわらず、LLMは、特に実世界の表表データに必要とされる推論の複雑さが増し、学術ベンチマークと実践的応用との顕著な相違が指摘されるなど、産業シナリオに適用された場合、依然として重大な課題に直面している。
この相違に対処するため,産業シナリオにおける表データの適用について詳細な調査を行い,テーブル質問応答機能(TableQA)の4大カテゴリに18の分野を含む,包括的で複雑なベンチマークTableBenchを提案する。
さらに,厳密に構築したTableInstructのトレーニングセットであるTableLLMを導入し,GPT-3.5と同等の性能を実現した。
TableBenchで実施された大規模な実験は、オープンソースとプロプライエタリなLLMの両方に、現実世界の要求を満たすための重要な改善の余地があることを示しており、最も先進的なモデルであるGPT-4は、人間に比べてわずかに緩やかなスコアしか得られていない。
関連論文リスト
- TableGPT2: A Large Multimodal Model with Tabular Data Integration [22.77225649639725]
TableGPT2は、593.8K以上のテーブルと2.36Mの高品質なクエリテーブル出力を備えた、厳格に事前訓練および微調整されたモデルである。
TableGPT2の重要な革新の1つは、スキーマレベルとセルレベルの情報をキャプチャするために特別に設計されたテーブルエンコーダである。
論文 参考訳(メタデータ) (2024-11-04T13:03:13Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - Uncovering Limitations of Large Language Models in Information Seeking from Tables [28.19697259795014]
本稿では,テーブル情報探索(TabIS)のための信頼性の高いベンチマークを紹介する。
テキスト類似度に基づくメトリクスによる信頼性の低い評価を避けるため、TabISはテキスト生成フォーマットではなく、単一選択の質問フォーマット(質問毎に2つのオプション)を採用する。
論文 参考訳(メタデータ) (2024-06-06T14:30:59Z) - QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs [63.98556480088152]
表要約は、情報を簡潔で分かりやすいテキスト要約に凝縮するための重要な課題である。
本稿では,クエリ中心のマルチテーブル要約を導入することで,これらの制約に対処する新しい手法を提案する。
提案手法は,テーブルシリアライズモジュール,要約コントローラ,および大規模言語モデルからなり,ユーザの情報要求に合わせたクエリ依存のテーブル要約を生成する。
論文 参考訳(メタデータ) (2024-05-08T15:05:55Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - Large Language Models are Complex Table Parsers [26.66460264175336]
本稿では,複合表QAの課題に対処するため,GPT-3.5を導入することを提案する。
具体的には、各セルの階層構造、位置情報、およびコンテンツをデータセットとしてエンコードする。
本研究では,各タスクの意味の説明的記述によるプロンプトテンプレートの強化により,階層的認識構造能力を効果的に向上する。
論文 参考訳(メタデータ) (2023-12-13T01:34:42Z) - UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model
in Data Science [16.384705926693073]
本研究は,データサイエンスにおける表上での予測を容易にするために,事前学習方法論の能力を拡張することを目的とする。
テーブルを一様に処理するために設計されたUniTabEは、特定のテーブル構造によって課される制約を無視する。
プレトレーニングフェーズを実装するため,Kaggleプラットフォームから正確に収集した約13Bサンプルからなる拡張データセットをキュレートした。
論文 参考訳(メタデータ) (2023-07-18T13:28:31Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。