論文の概要: PADetBench: Towards Benchmarking Physical Attacks against Object Detection
- arxiv url: http://arxiv.org/abs/2408.09181v1
- Date: Sat, 17 Aug 2024 12:11:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 22:01:27.351706
- Title: PADetBench: Towards Benchmarking Physical Attacks against Object Detection
- Title(参考訳): PADetBench: オブジェクト検出に対する物理的攻撃のベンチマークを目指す
- Authors: Jiawei Lian, Jianhong Pan, Lefan Wang, Yi Wang, Lap-Pui Chau, Shaohui Mei,
- Abstract要約: 物体検出に対する物理的攻撃は、その重要な実践的意味から注目を集めている。
これらの課題に対処するため、現実的なシミュレーションを活用し、物理的攻撃を徹底的かつ厳密にベンチマークする。
私たちのベンチマークには、20の物理的攻撃方法、48のオブジェクト検出器、包括的な物理力学、評価指標が含まれています。
- 参考スコア(独自算出の注目度): 16.342703290998752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physical attacks against object detection have gained increasing attention due to their significant practical implications. However, conducting physical experiments is extremely time-consuming and labor-intensive. Moreover, physical dynamics and cross-domain transformation are challenging to strictly regulate in the real world, leading to unaligned evaluation and comparison, severely hindering the development of physically robust models. To accommodate these challenges, we explore utilizing realistic simulation to thoroughly and rigorously benchmark physical attacks with fairness under controlled physical dynamics and cross-domain transformation. This resolves the problem of capturing identical adversarial images that cannot be achieved in the real world. Our benchmark includes 20 physical attack methods, 48 object detectors, comprehensive physical dynamics, and evaluation metrics. We also provide end-to-end pipelines for dataset generation, detection, evaluation, and further analysis. In addition, we perform 8064 groups of evaluation based on our benchmark, which includes both overall evaluation and further detailed ablation studies for controlled physical dynamics. Through these experiments, we provide in-depth analyses of physical attack performance and physical adversarial robustness, draw valuable observations, and discuss potential directions for future research. Codebase: https://github.com/JiaweiLian/Benchmarking_Physical_Attack
- Abstract(参考訳): 物体検出に対する物理的攻撃は、その重要な実践的意味から注目を集めている。
しかし、物理実験の実施は非常に時間がかかり、労働集約的である。
さらに、物理力学とクロスドメイン変換は現実世界で厳格に規制することが困難であり、不整合性の評価と比較が行われ、物理的に堅牢なモデルの開発を著しく妨げている。
これらの課題に対処するために、現実的なシミュレーションを活用して、制御された物理力学とクロスドメイン変換の下で、公正な物理攻撃を徹底的かつ厳密にベンチマークする。
これにより、現実世界では達成できない同一の逆画像を取得するという問題が解決される。
私たちのベンチマークには、20の物理的攻撃方法、48のオブジェクト検出器、包括的な物理力学、評価指標が含まれています。
また、データセットの生成、検出、評価、分析のためのエンドツーエンドパイプラインも提供しています。
さらに,本ベンチマークに基づく8064グループの評価を行い,総合的な評価と,制御された物理力学のより詳細なアブレーション研究を含む。
これらの実験を通じて,身体的攻撃性能と身体的敵意の強靭性を詳細に分析し,貴重な観測を導き,今後の研究の方向性について考察する。
Codebase: https://github.com/JiaweiLian/Benchmarking_Physical_Attack
関連論文リスト
- ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhyは、マシン物理常識を評価するための新しいベンチマークである。
私たちは、さまざまなAIモデルを評価し、ContPhyで満足なパフォーマンスを達成するのに依然として苦労していることがわかった。
また、近年の大規模言語モデルとパーティクルベースの物理力学モデルを組み合わせるためのオラクルモデル(ContPRO)を導入する。
論文 参考訳(メタデータ) (2024-02-09T01:09:21Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - Exploring the Physical World Adversarial Robustness of Vehicle Detection [13.588120545886229]
アドリアックは現実世界の検知モデルの堅牢性を損なう可能性がある。
CARLAシミュレータを用いた革新的なインスタントレベルデータ生成パイプラインを提案する。
本研究は, 逆境条件下での多種多様なモデル性能について考察した。
論文 参考訳(メタデータ) (2023-08-07T11:09:12Z) - Physion++: Evaluating Physical Scene Understanding that Requires Online
Inference of Different Physical Properties [100.19685489335828]
この研究は、人工システムにおける視覚的身体的予測を厳格に評価する新しいデータセットとベンチマークであるPhysylon++を提案する。
正確な予測が質量、摩擦、弾性、変形性などの特性の推定に依存するシナリオをテストする。
我々は,様々なレベルの学習と組込み知識にまたがる最先端予測モデルの性能を評価し,その性能を人間の予測と比較した。
論文 参考訳(メタデータ) (2023-06-27T17:59:33Z) - Physical Adversarial Attack meets Computer Vision: A Decade Survey [57.46379460600939]
本稿では,身体的敵意攻撃の概要を概観する。
本研究は,身体的敵意攻撃の性能を体系的に評価する第一歩を踏み出した。
提案する評価基準であるhiPAAは6つの視点から構成される。
論文 参考訳(メタデータ) (2022-09-30T01:59:53Z) - A Survey on Physical Adversarial Attack in Computer Vision [7.053905447737444]
ディープニューラルネットワーク(DNN)は、悪意のある小さなノイズによって作られた敵の例に弱いことが示されている。
DNNベースのシステムを現実世界に展開する機会が増えているため、これらのシステムの堅牢性を強化することは非常事態である。
論文 参考訳(メタデータ) (2022-09-28T17:23:52Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis [61.68061613161187]
Z-Maskは、敵の攻撃に対する畳み込みネットワークの堅牢性を改善するための堅牢で効果的な戦略である。
提示されたディフェンスは、入力画像中の対向対象に対応する画素を検出し、隠蔽するために、内部ネットワーク機能で実行される特定のZスコア解析に依存する。
追加の実験では、Z-Maskは防衛対応攻撃に対して堅牢であることが示された。
論文 参考訳(メタデータ) (2022-03-14T17:41:46Z) - Physion: Evaluating Physical Prediction from Vision in Humans and
Machines [46.19008633309041]
我々は、この能力を正確に測定する視覚的および身体的予測ベンチマークを示す。
我々は、様々な物理予測を行う能力について、アルゴリズムの配列を比較した。
物理的な状態にアクセス可能なグラフニューラルネットワークは、人間の振る舞いを最もよく捉えている。
論文 参考訳(メタデータ) (2021-06-15T16:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。