Improvement of Bayesian PINN Training Convergence in Solving Multi-scale PDEs with Noise
- URL: http://arxiv.org/abs/2408.09340v1
- Date: Sun, 18 Aug 2024 03:20:16 GMT
- Title: Improvement of Bayesian PINN Training Convergence in Solving Multi-scale PDEs with Noise
- Authors: Yilong Hou, Xi'an Li, Jinran Wu,
- Abstract summary: In practice, Hamiltonian Monte Carlo (HMC) used to estimate the internal parameters of BPINN often encounters troubles.
We develop a robust multi-scale Bayesian PINN (dubbed MBPINN) method by integrating multi-scale neural networks (MscaleDNN) and Bayesian inference.
Our findings indicate that the proposed method can avoid HMC failures and provide valid results.
- Score: 34.11898314129823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Physics Informed Neural Networks (BPINN) have received considerable attention for inferring differential equations' system states and physical parameters according to noisy observations. However, in practice, Hamiltonian Monte Carlo (HMC) used to estimate the internal parameters of BPINN often encounters troubles, including poor performance and awful convergence for a given step size used to adjust the momentum of those parameters. To improve the efficacy of HMC convergence for the BPINN method and extend its application scope to multi-scale partial differential equations (PDE), we developed a robust multi-scale Bayesian PINN (dubbed MBPINN) method by integrating multi-scale deep neural networks (MscaleDNN) and Bayesian inference. In this newly proposed MBPINN method, we reframe HMC with Stochastic Gradient Descent (SGD) to ensure the most ``likely'' estimation is always provided, and we configure its solver as a Fourier feature mapping-induced MscaleDNN. The MBPINN method offers several key advantages: (1) it is more robust than HMC, (2) it incurs less computational cost than HMC, and (3) it is more flexible for complex problems. We demonstrate the applicability and performance of the proposed method through general Poisson and multi-scale elliptic problems in one- to three-dimensional spaces. Our findings indicate that the proposed method can avoid HMC failures and provide valid results. Additionally, our method can handle complex PDE and produce comparable results for general PDE. These findings suggest that our proposed approach has excellent potential for physics-informed machine learning for parameter estimation and solution recovery in the case of ill-posed problems.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation [44.99833362998488]
We propose a randomized physics-informed neural network (PINN) or rPINN method for uncertainty quantification in inverse partial differential equation (PDE) problems with noisy data.
For the linear Poisson equation, HMC and rPINN produce similar distributions, but rPINN is on average 27 times faster than HMC.
For the non-linear Poison and diffusion equations, the HMC method fails to converge because a single HMC chain cannot sample multiple modes of the posterior distribution of the PINN parameters in a reasonable amount of time.
arXiv Detail & Related papers (2024-07-05T16:16:47Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Efficient Bayesian Physics Informed Neural Networks for Inverse Problems
via Ensemble Kalman Inversion [0.0]
We present a new efficient inference algorithm for B-PINNs that uses Ensemble Kalman Inversion (EKI) for high-dimensional inference tasks.
We find that our proposed method can achieve inference results with informative uncertainty estimates comparable to Hamiltonian Monte Carlo (HMC)-based B-PINNs with a much reduced computational cost.
arXiv Detail & Related papers (2023-03-13T18:15:26Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Bayesian deep learning framework for uncertainty quantification in high
dimensions [6.282068591820945]
We develop a novel deep learning method for uncertainty quantification in partial differential equations based on Bayesian neural network (BNN) and Hamiltonian Monte Carlo (HMC)
A BNN efficiently learns the posterior distribution of the parameters in deep neural networks by performing Bayesian inference on the network parameters.
The posterior distribution is efficiently sampled using HMC to quantify uncertainties in the system.
arXiv Detail & Related papers (2022-10-21T05:20:06Z) - MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural
network for solving partial differential equations [6.285167805465505]
Physics-informed neural networks (PINN) can achieve lower development and solving cost than traditional partial differential equation (PDE) solvers.
Due to the advantages of parameter sharing, spatial feature extraction and low inference cost, convolutional neural networks (CNN) are increasingly used in PINN.
arXiv Detail & Related papers (2022-09-06T12:26:22Z) - Monte Carlo PINNs: deep learning approach for forward and inverse
problems involving high dimensional fractional partial differential equations [8.378422134042722]
We introduce a sampling based machine learning approach, Monte Carlo physics informed neural networks (MC-PINNs) for solving forward and inverse fractional partial differential equations (FPDEs)
As a generalization of physics informed neural networks (PINNs), our method relies on deep neural network surrogates in addition to an approximation strategy for computing the fractional derivatives of the outputs.
We validate the performance of MC-PINNs via several examples that include high dimensional integral fractional Laplacian equations, parametric identification of time-space fractional PDEs, and fractional diffusion equation with random inputs.
arXiv Detail & Related papers (2022-03-16T09:52:05Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.