Concept Distillation from Strong to Weak Models via Hypotheses-to-Theories Prompting
- URL: http://arxiv.org/abs/2408.09365v1
- Date: Sun, 18 Aug 2024 05:37:48 GMT
- Title: Concept Distillation from Strong to Weak Models via Hypotheses-to-Theories Prompting
- Authors: Emmanuel Aboah Boateng, Cassiano O. Becker, Nabiha Asghar, Kabir Walia, Ashwin Srinivasan, Ehi Nosakhare, Victor Dibia, Soundar Srinivasan,
- Abstract summary: Concept Distillation (CD) is an automatic prompt optimization technique for enhancing weaker models on complex tasks.
CD involves: (1) collecting mistakes made by weak models with a base prompt (initialization), (2) using a strong model to generate reasons for these mistakes and create rules/concepts for weak models (induction), and (3) filtering these rules based on validation set performance.
We evaluated CD on NL2Code and mathematical reasoning tasks, observing significant performance boosts for small and weaker language models.
- Score: 7.146498833443095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hand-crafting high quality prompts to optimize the performance of language models is a complicated and labor-intensive process. Furthermore, when migrating to newer, smaller, or weaker models (possibly due to latency or cost gains), prompts need to be updated to re-optimize the task performance. We propose Concept Distillation (CD), an automatic prompt optimization technique for enhancing weaker models on complex tasks. CD involves: (1) collecting mistakes made by weak models with a base prompt (initialization), (2) using a strong model to generate reasons for these mistakes and create rules/concepts for weak models (induction), and (3) filtering these rules based on validation set performance and integrating them into the base prompt (deduction/verification). We evaluated CD on NL2Code and mathematical reasoning tasks, observing significant performance boosts for small and weaker language models. Notably, Mistral-7B's accuracy on Multi-Arith increased by 20%, and Phi-3-mini-3.8B's accuracy on HumanEval rose by 34%. Compared to other automated methods, CD offers an effective, cost-efficient strategy for improving weak models' performance on complex tasks and enables seamless workload migration across different language models without compromising performance.
Related papers
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Weak-to-Strong Reasoning [33.20094938292376]
We introduce a progressive learning framework that enables the strong model to autonomously refine its training data.
Our method significantly enhances the reasoning capabilities of Llama2-70b using three separate weak models.
This work paves the way for a more scalable and sophisticated strategy to enhance AI reasoning powers.
arXiv Detail & Related papers (2024-07-18T16:25:17Z) - Super Tiny Language Models [3.8353434814956517]
This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs)
We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies.
Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
arXiv Detail & Related papers (2024-05-23T04:12:49Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLM is a more effective and efficient KD framework for auto-regressive language models.
DisiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs.
arXiv Detail & Related papers (2024-02-06T11:10:35Z) - Mixed Distillation Helps Smaller Language Model Better Reasoning [27.934081882868902]
We introduce Mixed Distillation (MD) framework, which capitalizes on the strengths of Program of Thought (PoT) and Chain of Thought (CoT) capabilities within large language models (LLMs)
Our experimental results show that MD significantly enhances the single-path and multi-path reasoning ability of smaller models in various tasks.
arXiv Detail & Related papers (2023-12-17T14:28:28Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - SmartTrim: Adaptive Tokens and Attention Pruning for Efficient
Vision-Language Models [35.5601603013045]
We propose SmartTrim, an adaptive acceleration framework for Vision-Language Models (VLMs)
We integrate lightweight modules into the original backbone to identify and prune redundant token representations and attention heads within each layer.
We devise a self-distillation strategy to enhance the consistency between the predictions of the pruned model and its fully-capacity counterpart.
arXiv Detail & Related papers (2023-05-24T11:18:00Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.