GRLinQ: An Intelligent Spectrum Sharing Mechanism for Device-to-Device Communications with Graph Reinforcement Learning
- URL: http://arxiv.org/abs/2408.09394v1
- Date: Sun, 18 Aug 2024 07:39:01 GMT
- Title: GRLinQ: An Intelligent Spectrum Sharing Mechanism for Device-to-Device Communications with Graph Reinforcement Learning
- Authors: Zhiwei Shan, Xinping Yi, Le Liang, Chung-Shou Liao, Shi Jin,
- Abstract summary: Device-to-device (D2D) spectrum sharing in communications is a challenging non- wireless optimization problem.
We propose a novel model/datadriven spectrum sharing mechanism with graph reinforcement learning for link (GRLinQ)
GRLinQ demonstrates superior performance to the existing model-based link scheduling and/or power control methods.
- Score: 36.37521131173745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Device-to-device (D2D) spectrum sharing in wireless communications is a challenging non-convex combinatorial optimization problem, involving entangled link scheduling and power control in a large-scale network. The state-of-the-art methods, either from a model-based or a data-driven perspective, exhibit certain limitations such as the critical need for channel state information (CSI) and/or a large number of (solved) instances (e.g., network layouts) as training samples. To advance this line of research, we propose a novel hybrid model/datadriven spectrum sharing mechanism with graph reinforcement learning for link scheduling (GRLinQ), injecting information theoretical insights into machine learning models, in such a way that link scheduling and power control can be solved in an intelligent yet explainable manner. Through an extensive set of experiments, GRLinQ demonstrates superior performance to the existing model-based and data-driven link scheduling and/or power control methods, with a relaxed requirement for CSI, a substantially reduced number of unsolved instances as training samples, a possible distributed deployment, reduced online/offline computational complexity, and more remarkably excellent scalability and generalizability over different network scenarios and system configurations.
Related papers
- OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
Federated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices.
We propose OnDev-LCT: Lightweight Convolutional Transformers for On-Device vision tasks with limited training data and resources.
arXiv Detail & Related papers (2024-01-22T02:17:36Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
We resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications.
To design graph reinforcement learning framework systematically, we first conceive a method to transform state matrix into state graph.
We then propose a general method for graph neural networks to satisfy desirable permutation properties.
arXiv Detail & Related papers (2022-03-08T08:02:54Z) - Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning [23.05003652536773]
Federated edge learning (FEEL) is a promising distributed machine learning (ML) framework to drive edge intelligence applications.
We propose time-correlated sparsification with hybrid aggregation (TCS-H) for communication-efficient FEEL.
arXiv Detail & Related papers (2022-02-17T02:48:07Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
We propose a novel method of exploiting model parallelism to separate a neural network for distributed inferences.
Under proper specifications of devices and configurations of models, our experiments show that the inference of large neural networks on edge clusters can be distributed and accelerated.
arXiv Detail & Related papers (2021-11-03T19:30:28Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed.
We propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate.
Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks.
arXiv Detail & Related papers (2020-06-21T23:07:41Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.