BernGraph: Probabilistic Graph Neural Networks for EHR-based Medication Recommendations
- URL: http://arxiv.org/abs/2408.09410v3
- Date: Wed, 11 Sep 2024 02:12:44 GMT
- Title: BernGraph: Probabilistic Graph Neural Networks for EHR-based Medication Recommendations
- Authors: Xihao Piao, Pei Gao, Zheng Chen, Lingwei Zhu, Yasuko Matsubara, Yasushi Sakurai, Jimeng Sun,
- Abstract summary: Medical community believes binary medical event outcomes in EHR data contain sufficient information for making sensible recommendation.
Modeling the relationship between massive 0,1 event outcomes is difficult, even with expert knowledge.
In practice, learning can be stalled by the binary values since the equally important 0 entries propagate no learning signals.
- Score: 28.456738816539488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The medical community believes binary medical event outcomes in EHR data contain sufficient information for making a sensible recommendation. However, there are two challenges to effectively utilizing such data: (1) modeling the relationship between massive 0,1 event outcomes is difficult, even with expert knowledge; (2) in practice, learning can be stalled by the binary values since the equally important 0 entries propagate no learning signals. Currently, there is a large gap between the assumed sufficient information and the reality that no promising results have been shown by utilizing solely the binary data: visiting or secondary information is often necessary to reach acceptable performance. In this paper, we attempt to build the first successful binary EHR data-oriented drug recommendation system by tackling the two difficulties, making sensible drug recommendations solely using the binary EHR medical records. To this end, we take a statistical perspective to view the EHR data as a sample from its cohorts and transform them into continuous Bernoulli probabilities. The transformed entries not only model a deterministic binary event with a distribution but also allow reflecting \emph{event-event} relationship by conditional probability. A graph neural network is learned on top of the transformation. It captures event-event correlations while emphasizing \emph{event-to-patient} features. Extensive results demonstrate that the proposed method achieves state-of-the-art performance on large-scale databases, outperforming baseline methods that use secondary information by a large margin. The source code is available at \url{https://github.com/chenzRG/BEHRMecom}
Related papers
- HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks [2.2026317523029193]
HealthGAT is a graph attention network framework that generates embeddings from EHR.
Our model iteratively refines the embeddings for medical codes, resulting in improved EHR data analysis.
Our model shows outstanding performance in node classification and downstream tasks such as predicting readmissions and diagnosis classifications.
arXiv Detail & Related papers (2024-03-26T22:17:01Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Multi-modal Graph Learning for Disease Prediction [35.156975779372836]
We propose an end-to-end Multi-modal Graph Learning framework (MMGL) for disease prediction with multi-modality.
Instead of defining the graph manually, the latent graph structure is captured through an effective way of adaptive graph learning.
An extensive group of experiments on two disease prediction tasks demonstrates that the proposed MMGL achieves more favorable performance.
arXiv Detail & Related papers (2022-03-11T12:33:20Z) - Compensating trajectory bias for unsupervised patient stratification
using adversarial recurrent neural networks [0.6323908398583082]
We show that patient embeddings and clusters might be impacted by a trajectory bias.
Results are dominated by the amount of data contained in each patients trajectory, instead of clinically relevant details.
We present a method that can overcome this issue using an adversarial training scheme on top of a RNN-AE.
arXiv Detail & Related papers (2021-12-14T09:01:28Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Categorical EHR Imputation with Generative Adversarial Nets [11.171712535005357]
We propose a simple and yet effective approach that is based on previous work on GANs for data imputation.
We show that our imputation approach largely improves the prediction accuracy, compared to more traditional data imputation approaches.
arXiv Detail & Related papers (2021-08-03T18:50:26Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
We propose SumGNN: knowledge summarization graph neural network, which is enabled by a subgraph extraction module.
SumGNN outperforms the best baseline by up to 5.54%, and the performance gain is particularly significant in low data relation types.
arXiv Detail & Related papers (2020-10-04T00:14:57Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.