論文の概要: In-Memory Learning Automata Architecture using Y-Flash Cell
- arxiv url: http://arxiv.org/abs/2408.09456v1
- Date: Sun, 18 Aug 2024 12:31:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:30:46.960220
- Title: In-Memory Learning Automata Architecture using Y-Flash Cell
- Title(参考訳): Y-Flashセルを用いたインメモリ学習オートマタアーキテクチャ
- Authors: Omar Ghazal, Tian Lan, Shalman Ojukwu, Komal Krishnamurthy, Alex Yakovlev, Rishad Shafik,
- Abstract要約: インメモリコンピューティングは、主にメムリスタベースのアナログコンピューティングを通じて、このフォン・ノイマンのボトルネックを克服する有望なソリューションを提供する。
本稿では,180nmの標準CMOSプロセスで製造されたフローティングゲートY-Flash中間素子を利用する新しい手法を提案する。
本稿では,新しい機械学習アルゴリズムであるTsetlin Machine (TM) をインメモリ処理アーキテクチャに適用する。
- 参考スコア(独自算出の注目度): 13.901548326102784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern implementation of machine learning architectures faces significant challenges due to frequent data transfer between memory and processing units. In-memory computing, primarily through memristor-based analog computing, offers a promising solution to overcome this von Neumann bottleneck. In this technology, data processing and storage are located inside the memory. Here, we introduce a novel approach that utilizes floating-gate Y-Flash memristive devices manufactured with a standard 180 nm CMOS process. These devices offer attractive features, including analog tunability and moderate device-to-device variation; such characteristics are essential for reliable decision-making in ML applications. This paper uses a new machine learning algorithm, the Tsetlin Machine (TM), for in-memory processing architecture. The TM's learning element, Automaton, is mapped into a single Y-Flash cell, where the Automaton's range is transferred into the Y-Flash's conductance scope. Through comprehensive simulations, the proposed hardware implementation of the learning automata, particularly for Tsetlin machines, has demonstrated enhanced scalability and on-edge learning capabilities.
- Abstract(参考訳): 機械学習アーキテクチャの現代的な実装は、メモリと処理ユニット間のデータ転送が頻繁に行われるため、大きな課題に直面している。
インメモリコンピューティングは、主にメムリスタベースのアナログコンピューティングを通じて、このフォン・ノイマンのボトルネックを克服する有望なソリューションを提供する。
この技術では、メモリ内にデータ処理とストレージが配置される。
本稿では,180nmの標準CMOSプロセスで製造されたフローティングゲートY-Flash中間素子を利用する新しい手法を提案する。
これらのデバイスは、アナログチューナビリティや適度なデバイス間変動など、魅力的な特徴を提供する。
本稿では,新しい機械学習アルゴリズムであるTsetlin Machine (TM) をインメモリ処理アーキテクチャに適用する。
TMの学習要素であるAutomatonは単一のY-Flashセルにマッピングされ、Automatonの範囲はY-Flashのコンダクタンススコープに転送される。
包括的なシミュレーションを通じて、特にTsetlinマシン向けに提案された学習オートマトンの実装により、拡張スケーラビリティとオンエッジ学習能力が実証された。
関連論文リスト
- Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - IMBUE: In-Memory Boolean-to-CUrrent Inference ArchitecturE for Tsetlin
Machines [5.6634493664726495]
機械学習(ML)アプリケーションのためのインメモリコンピューティングは、並列性と局所性を活用するために計算を整理することで、フォン・ノイマンのボトルネックを修復する。
Resistive RAM(ReRAM)のような不揮発性メモリデバイスは、MLアプリケーションに有望なパフォーマンスを示す、統合的なスイッチングとストレージ機能を提供する。
本稿では,ReRAMトランジスタセルを用いたメモリ内Boolean-to-Current Inference Architecture (IMBUE)を提案する。
論文 参考訳(メタデータ) (2023-05-22T10:55:01Z) - A Co-design view of Compute in-Memory with Non-Volatile Elements for
Neural Networks [12.042322495445196]
次世代のコンピューティングハードウェアにおいて,コンピュート・イン・メモリがいかに重要な役割を果たすかを論じる。
非揮発性メモリベースのクロスバーアーキテクチャは、アナログプロセスを使用して行列ベクトル乗算演算を並列化するエンジンの心臓を形成する。
クロスバーアーキテクチャは、時にはニューロモルフィックアプローチと呼ばれ、将来のコンピュータにおいて重要なハードウェア要素となる。
論文 参考訳(メタデータ) (2022-06-03T15:59:46Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
本稿では,人工知能(AI)と機械学習(ML)アプリケーションを実現するための,ANNのためのインメモリコンピューティングアーキテクチャを提案する。
我々の新しいオンチップトレーニングとインメモリアーキテクチャは、プリチャージサイクル当たりの配列の複数行を同時にアクセスすることで、エネルギーコストを削減し、スループットを向上させる。
提案したアーキテクチャはIRISデータセットでトレーニングされ、以前の分類器と比較してMAC当たりのエネルギー効率が4,6倍に向上した。
論文 参考訳(メタデータ) (2020-05-19T15:36:39Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。