論文の概要: Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
- arxiv url: http://arxiv.org/abs/2408.09490v2
- Date: Thu, 17 Oct 2024 10:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 06:55:48.757854
- Title: Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
- Title(参考訳): ヘテロ親水性グラフ構造分布シフトに対する不変原理の活用
- Authors: Jinluan Yang, Zhengyu Chen, Teng Xiao, Wenqiao Zhang, Yong Lin, Kun Kuang,
- Abstract要約: Heterophilic Graph Neural Networks (HGNN) は、グラフ上の半教師付き学習タスクに対して有望な結果を示している。
この構造差や分布シフトを扱うために、異種グラフ上の不変ノード表現を学習する方法は、まだ解明されていない。
異種情報を組み込んだ不変ノード表現を生成可能なフレームワークである textbfHEI を提案する。
- 参考スコア(独自算出の注目度): 42.77503881972965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose \textbf{HEI}, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.
- Abstract(参考訳): Heterophilic Graph Neural Networks (HGNN) は、グラフ上の半教師付き学習タスクに対して有望な結果を示している。
特に、ほとんどの実世界のヘテロ親和性グラフは、異なる隣接するパターンのノードの混合で構成され、局所的なノードレベルのホモ親和性とヘテロ親和性構造を示す。
しかし、既存の研究は、ヘテロ親水性グラフベンチマークとホモ親水性グラフベンチマークのノード分類タスクのためのより良いHGNNバックボーンやアーキテクチャを同時に設計することのみに特化しており、そのノードに対するHGNN性能の分析は、このトレーニングとテストノードの構造的違いによる影響を探索することなく、決定されたデータ分布に基づいてのみ行われる。
この構造差や分布シフトを扱うために、異種グラフ上の不変ノード表現を学習する方法は、まだ解明されていない。
本稿では,データ拡張の観点から,従来のグラフに基づく不変学習手法の限界について論じる。
次に,不均一なノード表現を生成するためのフレームワークである‘textbf{HEI} を提案する。
提案手法は, ヘテロ親和性グラフ構造分布シフトにおいて, 保証された性能を実現することができることを示す。
各種ベンチマークやバックボーンの大規模な実験により,既存の最先端ベースラインと比較して,本手法の有効性が示された。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
論理的に異なるラベルを持つノードは意味論的意味に基づいて接続される傾向があるが、グラフニューラルネットワーク(GNN)は、しばしば最適以下の性能を示す。
ヘテロフィリーに固有の意味情報をグラフ学習において効果的に活用できることを示す。
ノード分布を利用して異種情報を統合する新しいグラフ構造を構築する革新的な手法であるHiGNNを提案する。
論文 参考訳(メタデータ) (2024-03-26T03:29:42Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
ほとんどの実世界のホモフィルグラフとヘテロフィルグラフは、ホモフィルグラフとヘテロフィルグラフの両方の構造パターンの混合ノードから構成される。
ノード分類におけるグラフニューラルネットワーク (GNN) は, 一般にホモ親和性ノード上で良好に機能することを示す。
次に、GNNに対する厳密で非I.d PAC-Bayesian一般化を提案し、性能格差の理由を明らかにした。
論文 参考訳(メタデータ) (2023-06-02T07:46:20Z) - Powerful Graph Convolutioal Networks with Adaptive Propagation Mechanism
for Homophily and Heterophily [38.50800951799888]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データ処理において大きな影響力を持つため、様々な分野に広く応用されている。
既存の方法は、主に高次近傍を集約したり、即時表現を結合することでヘテロフィリーを扱う。
本稿では, ホモフィリーやヘテロフィリーに応じて自動的に伝播・凝集過程を変更できる新しい伝播機構を提案する。
論文 参考訳(メタデータ) (2021-12-27T08:19:23Z) - Simple Truncated SVD based Model for Node Classification on Heterophilic
Graphs [0.5309004257911242]
グラフニューラルネットワーク(GNN)は、強いホモフィリーを示すグラフに対して優れた性能を示す。
近年のアプローチでは、この制限に対処するため、アダプティブグラフフィルタなどのアグリゲーションスキームの変更が一般的である。
本稿では, トポロジ構造とノード特徴のトランク付き特異値分解(TSVD)を利用した簡易な代替手法を提案する。
論文 参考訳(メタデータ) (2021-06-24T07:48:18Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Graph Neural Networks with Heterophily [40.23690407583509]
我々は、ホモフィリーなグラフとヘテロフィリーなグラフのGNNを一般化するCPGNNと呼ばれる新しいフレームワークを提案する。
フレームワークの互換性行列を(純粋なホモフィリーを表す)同一性に置き換えると、GCNに還元されることを示す。
論文 参考訳(メタデータ) (2020-09-28T18:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。