Enhancing Quantum Memory Lifetime with Measurement-Free Local Error Correction and Reinforcement Learning
- URL: http://arxiv.org/abs/2408.09524v1
- Date: Sun, 18 Aug 2024 16:18:21 GMT
- Title: Enhancing Quantum Memory Lifetime with Measurement-Free Local Error Correction and Reinforcement Learning
- Authors: Mincheol Park, Nishad Maskara, Marcin Kalinowski, Mikhail D. Lukin,
- Abstract summary: We investigate circuit-level error-correcting protocols that are measurement-free and based on $textitlocal$ error information.
We show that such circuits can be used to reduce the rate of mid-circuit readouts to preserve a 2D toric code memory.
- Score: 1.0446041735532203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable quantum computation requires systematic identification and correction of errors that occur and accumulate in quantum hardware. To diagnose and correct such errors, standard quantum error-correcting protocols utilize $\textit{global}$ error information across the system obtained by mid-circuit readout of ancillary qubits. We investigate circuit-level error-correcting protocols that are measurement-free and based on $\textit{local}$ error information. Such a local error correction (LEC) circuit consists of faulty multi-qubit gates to perform both syndrome extraction and ancilla-controlled error removal. We develop and implement a reinforcement learning framework that takes a fixed set of faulty gates as inputs and outputs an optimized LEC circuit. To evaluate this approach, we quantitatively characterize an extension of logical qubit lifetime by a noisy LEC circuit. For the 2D classical Ising model and 4D toric code, our optimized LEC circuit performs better at extending a memory lifetime compared to a conventional LEC circuit based on Toom's rule in a sub-threshold gate error regime. We further show that such circuits can be used to reduce the rate of mid-circuit readouts to preserve a 2D toric code memory. Finally, we discuss the application of the LEC protocol on dissipative preparation of quantum states with topological phases.
Related papers
- Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning [1.1891349121931318]
We propose and explore reinforcement learning to automatically discover compact and hardware-adapted fault-tolerant quantum circuits.
We show that in the task of fault-tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than published results without and with hardware constraints of up to 15 physical qubits.
arXiv Detail & Related papers (2024-02-27T18:55:13Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Finding Broken Gates in Quantum Circuits---Exploiting Hybrid Machine
Learning [0.0]
Current implementations of quantum logic gates can be highly faulty and introduce errors.
We numerically demonstrate an ability to locate a faulty gate in circuits with over 30 gates and up to nine qubits with over 90% accuracy.
arXiv Detail & Related papers (2020-01-29T16:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.