論文の概要: Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images
- arxiv url: http://arxiv.org/abs/2408.09554v2
- Date: Tue, 20 Aug 2024 12:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 18:39:27.962357
- Title: Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images
- Title(参考訳): スクリーンのテーマ:H&E全スライド画像からの高出力パンキャスター遺伝子とフェノタイプバイオマーカーのスクリーニング
- Authors: Yi Kan Wang, Ludmila Tydlitatova, Jeremy D. Kunz, Gerard Oakley, Ran A. Godrich, Matthew C. H. Lee, Chad Vanderbilt, Razik Yousfi, Thomas Fuchs, David S. Klimstra, Siqi Liu,
- Abstract要約: 通常のH&EスライドでのAIの使用は、複数の分子バイオマーカーのスクリーニングに迅速かつ経済的アプローチを提供する。
我々は,300万スライドで事前学習した基礎モデルであるVirchow2を利用した高スループットAIベースシステムを提案する。
バイオマーカーや癌の種類ごとに個別のモデルを訓練する従来の手法とは異なり、我々のシステムは、幅広い臨床関連分子バイオマーカーを同時に予測するために統一されたモデルを採用している。
- 参考スコア(独自算出の注目度): 3.119559770601732
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many molecular alterations serve as clinically prognostic or therapy-predictive biomarkers, typically detected using single or multi-gene molecular assays. However, these assays are expensive, tissue destructive and often take weeks to complete. Using AI on routine H&E WSIs offers a fast and economical approach to screen for multiple molecular biomarkers. We present a high-throughput AI-based system leveraging Virchow2, a foundation model pre-trained on 3 million slides, to interrogate genomic features previously determined by an next-generation sequencing (NGS) assay, using 47,960 scanned hematoxylin and eosin (H&E) whole slide images (WSIs) from 38,984 cancer patients. Unlike traditional methods that train individual models for each biomarker or cancer type, our system employs a unified model to simultaneously predict a wide range of clinically relevant molecular biomarkers across cancer types. By training the network to replicate the MSK-IMPACT targeted biomarker panel of 505 genes, it identified 80 high performing biomarkers with a mean AU-ROC of 0.89 in 15 most common cancer types. In addition, 40 biomarkers demonstrated strong associations with specific cancer histologic subtypes. Furthermore, 58 biomarkers were associated with targets frequently assayed clinically for therapy selection and response prediction. The model can also predict the activity of five canonical signaling pathways, identify defects in DNA repair mechanisms, and predict genomic instability measured by tumor mutation burden, microsatellite instability (MSI), and chromosomal instability (CIN). The proposed model can offer potential to guide therapy selection, improve treatment efficacy, accelerate patient screening for clinical trials and provoke the interrogation of new therapeutic targets.
- Abstract(参考訳): 多くの分子変異は臨床診断または治療予測バイオマーカーとして機能し、典型的には単遺伝子または多遺伝子分子アッセイを用いて検出される。
しかし、これらのアッセイは高価で組織破壊性があり、完成までに数週間かかることが多い。
通常のH&E WSIにAIを使用することで、複数の分子バイオマーカーのスクリーニングを迅速かつ経済的に行うことができる。
次世代シークエンシング(NGS)アッセイで決定されたゲノム特徴を,38,984例のがん患者の47,960個のヘマトキシリンおよびエオシン全スライド画像(WSI)を用いて問うため,300万個のスライドに事前トレーニングされた基礎モデルであるVirchow2を利用した高スループットAIベースシステムを提案する。
バイオマーカーや癌の種類ごとに個別のモデルを訓練する従来の手法とは異なり、我々のシステムは、がんの種類にまたがる幅広い臨床的に関連する分子バイオマーカーを同時に予測するために統一されたモデルを採用している。
ネットワークをトレーニングし、505遺伝子のMSK-IMPACT標的バイオマーカーパネルを再現することで、最も一般的な15種類のがんにおいて平均0.89のAU-ROCを持つハイパフォーマンスバイオマーカー80を同定した。
さらに40名のバイオマーカーが特定の癌組織学的サブタイプと強い関連性を示した。
さらに, 治療選択と反応予測のために臨床検査を頻繁に行ったターゲットには, 58種類のバイオマーカーが関与していた。
このモデルはまた、5つの標準シグナル伝達経路の活性を予測し、DNA修復機構の欠陥を特定し、腫瘍突然変異の負担、マイクロサテライト不安定(MSI)、染色体不安定(CIN)によって測定されたゲノム不安定を予測できる。
提案モデルでは,治療選択のガイド,治療効果の向上,臨床試験の患者スクリーニングの促進,新たな治療対象の取調べの促進が期待できる。
関連論文リスト
- Biomarker based Cancer Classification using an Ensemble with Pre-trained Models [2.2436844508175224]
マルチクラス分類タスクに対して,事前学習したハイパーファストモデル,XGBoost,LightGBMを組み合わせた新しいアンサンブルモデルを提案する。
我々はメタトレーニングしたハイパーファストモデルを用いてがんの分類を行い、AUCは0.9929である。
また,事前学習したハイパーファストモデル,XGBoost,LightGBMを多クラス分類タスクに組み合わせた新しいアンサンブルモデルを提案し,精度を漸進的に向上させる(0.9464)。
論文 参考訳(メタデータ) (2024-06-14T14:43:59Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning [0.7082642128219231]
組織学的にヘマトキシリンとエオシンで染色されたサンプルは、一般的に大腸癌管理に用いられている。
近年の研究では、手軽に利用できる画像から臨床関連バイオマーカーの抽出を容易にするための畳み込みニューラルネットワーク(CNN)の可能性を強調している。
CNNベースのバイオマーカーは、スピード、自動化、最小コストの利点を付加して、患者の結果をゴールデンスタンダードと同等に予測することができる。
論文 参考訳(メタデータ) (2023-10-25T19:46:27Z) - Deep Learning Predicts Biomarker Status and Discovers Related
Histomorphology Characteristics for Low-Grade Glioma [21.281553456323998]
低次グリオーマ(LGG)の診断と治療にはバイオマーカー検出が不可欠である
ヘマトキシリンとエオシンを含む全スライド画像とスライドレベルのバイオマーカーステータスラベルを用いて,LGGの5つのバイオマーカーの状態を予測するための解釈可能なディープラーニングパイプラインを提案する。
我々のパイプラインはバイオマーカー予測の新しいアプローチを提供するだけでなく、LGG患者に対する分子治療の適用性を高めるだけでなく、分子機能とLGGの進行の新たなメカニズムの発見を促進する。
論文 参考訳(メタデータ) (2023-10-11T13:05:33Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Regression-based Deep-Learning predicts molecular biomarkers from
pathology slides [40.24757332810004]
我々は,画像から直接バイオマーカーを予測する自己監督型弱教師付き回帰手法を開発し,評価した。
回帰を用いて、バイオマーカー予測の精度を著しく向上させ、また、分類よりも結果の解釈可能性を向上させる。
我々のオープンソースレグレッションアプローチは、計算病理学における連続バイオマーカー解析に有望な代替手段を提供する。
論文 参考訳(メタデータ) (2023-04-11T11:43:51Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A
Practical Review [0.0]
分子的およびゲノム的性質は、個々の腫瘍を標的とするがん治療の選択に重要である。
H&E画像に機械学習を適用することで、よりコスト効率の良いスクリーニングが可能になる。
本稿では、がんの種類や、これらのモデルを訓練し、検証するための方法論に関する多様な応用についてレビューする。
論文 参考訳(メタデータ) (2022-11-27T14:57:41Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。