論文の概要: Validation Diagnostics for SBI algorithms based on Normalizing Flows
- arxiv url: http://arxiv.org/abs/2211.09602v1
- Date: Thu, 17 Nov 2022 15:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 15:07:58.523496
- Title: Validation Diagnostics for SBI algorithms based on Normalizing Flows
- Title(参考訳): 流れの正規化に基づくsbiアルゴリズムの検証診断
- Authors: Julia Linhart (1,2), Alexandre Gramfort (1), Pedro L. C. Rodrigues (2)
((1) MIND - INRIA, (2) University of Paris-Saclay, (3) STATIFY - INRIA)
- Abstract要約: 本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on the recent trend of new deep generative models known as
Normalizing Flows (NF), simulation-based inference (SBI) algorithms can now
efficiently accommodate arbitrary complex and high-dimensional data
distributions. The development of appropriate validation methods however has
fallen behind. Indeed, most of the existing metrics either require access to
the true posterior distribution, or fail to provide theoretical guarantees on
the consistency of the inferred approximation beyond the one-dimensional
setting. This work proposes easy to interpret validation diagnostics for
multi-dimensional conditional (posterior) density estimators based on NF. It
also offers theoretical guarantees based on results of local consistency. The
proposed workflow can be used to check, analyse and guarantee consistent
behavior of the estimator. The method is illustrated with a challenging example
that involves tightly coupled parameters in the context of computational
neuroscience. This work should help the design of better specified models or
drive the development of novel SBI-algorithms, hence allowing to build up trust
on their ability to address important questions in experimental science.
- Abstract(参考訳): 正規化フロー (NF) と呼ばれる新しい深層生成モデルのトレンドに基づき、シミュレーションベース推論 (SBI) アルゴリズムが任意の複素および高次元データ分布を効率的に適応できるようになった。
しかし、適切な検証方法の開発は遅れている。
実際、既存のメトリックのほとんどは、真の後方分布へのアクセスを必要とするか、あるいは1次元設定を超えて推定された近似の一貫性に関する理論的保証を提供していない。
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
局所的一貫性の結果に基づく理論的保証も提供する。
提案するワークフローは、推定子の一貫した振る舞いのチェック、分析、保証に使用できる。
この方法は、計算神経科学の文脈において、密結合パラメータを含む困難な例で示される。
この研究は、より良い特定モデルの設計や、新しいsbi-algorithmsの開発に役立ち、実験科学における重要な疑問に答える能力に対する信頼を築くことができるだろう。
関連論文リスト
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
論文 参考訳(メタデータ) (2024-10-08T20:07:49Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Borrowing Strength in Distributionally Robust Optimization via Hierarchical Dirichlet Processes [35.53901341372684]
提案手法は正規化推定,分布的ロバストな最適化,階層ベイズモデリングを統一する。
階層的ディリクレプロセス(HDP)を用いることで、マルチソースデータを効果的に処理する。
数値実験により,予測精度とパラメータ推定精度の両方の改善と安定化におけるフレームワークの有効性が検証された。
論文 参考訳(メタデータ) (2024-05-21T19:03:09Z) - Implicit Generative Prior for Bayesian Neural Networks [8.013264410621357]
複雑なデータ構造のための新しいニューラルネットワーク型経験ベイズ(NA-EB)フレームワークを提案する。
NA-EBフレームワークは変分推論と勾配上昇アルゴリズムを組み合わせたものである。
各種タスクの広範囲な評価を通じて,本フレームワークの実践的応用を実証する。
論文 参考訳(メタデータ) (2024-04-27T21:00:38Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。