論文の概要: Recording for Eyes, Not Echoing to Ears: Contextualized Spoken-to-Written Conversion of ASR Transcripts
- arxiv url: http://arxiv.org/abs/2408.09688v1
- Date: Mon, 19 Aug 2024 03:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:34:18.841498
- Title: Recording for Eyes, Not Echoing to Ears: Contextualized Spoken-to-Written Conversion of ASR Transcripts
- Title(参考訳): 耳に響かない眼の録音:ASR文字の文脈的音声から文字への変換
- Authors: Jiaqing Liu, Chong Deng, Qinglin Zhang, Qian Chen, Hai Yu, Wen Wang,
- Abstract要約: 本研究では,ASRと文法の誤りに対処する文脈対応型スポンケン・トゥ・ブリッテン変換(CoS2W)タスクを提案する。
このタスクは、Large Language Models(LLM)のコンテキスト内学習機能と自然に一致する。
- 参考スコア(独自算出の注目度): 18.217375601357364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic Speech Recognition (ASR) transcripts exhibit recognition errors and various spoken language phenomena such as disfluencies, ungrammatical sentences, and incomplete sentences, hence suffering from poor readability. To improve readability, we propose a Contextualized Spoken-to-Written conversion (CoS2W) task to address ASR and grammar errors and also transfer the informal text into the formal style with content preserved, utilizing contexts and auxiliary information. This task naturally matches the in-context learning capabilities of Large Language Models (LLMs). To facilitate comprehensive comparisons of various LLMs, we construct a document-level Spoken-to-Written conversion of ASR Transcripts Benchmark (SWAB) dataset. Using SWAB, we study the impact of different granularity levels on the CoS2W performance, and propose methods to exploit contexts and auxiliary information to enhance the outputs. Experimental results reveal that LLMs have the potential to excel in the CoS2W task, particularly in grammaticality and formality, our methods achieve effective understanding of contexts and auxiliary information by LLMs. We further investigate the effectiveness of using LLMs as evaluators and find that LLM evaluators show strong correlations with human evaluations on rankings of faithfulness and formality, which validates the reliability of LLM evaluators for the CoS2W task.
- Abstract(参考訳): 自動音声認識(ASR)文字起こしは、認識誤りや不一致、非文法文、不完全文などの様々な言語現象を呈し、読みやすさの低下に悩まされている。
可読性を向上させるため,ASRと文法の誤りに対処し,文脈や補助情報を利用してテキストを形式形式に変換するコンテキスト対応型音声変換(CoS2W)タスクを提案する。
このタスクは、Large Language Models(LLM)のコンテキスト内学習機能と自然に一致します。
各種LLMの総合的な比較を容易にするため,文書レベルでの ASR Transcripts Benchmark (SWAB) データセットのSpoken-to-Written変換を構築した。
SWABを用いて,異なる粒度レベルがCoS2Wの性能に与える影響を調べた。
実験結果から,LLMはCoS2Wタスク,特に文法性や形式性において優れる可能性が示唆された。
さらに,LLMを評価対象として用いることの有効性について検討し,信頼性と形式性の評価において人間評価と強い相関性を示し,その信頼性をCoS2Wタスクで検証する。
関連論文リスト
- Can LLMs Understand the Implication of Emphasized Sentences in Dialogue? [64.72966061510375]
強調は人間のコミュニケーションにおいて重要な要素であり、対話における純粋テキストを超えて話者の意図と含意を示す。
本稿では,強調の意味を抽出した強調注釈付き対話サンプルを用いたベンチマークであるEmphasized-Talkを紹介する。
オープンソースと商用の両方で様々な大規模言語モデル(LLM)を評価し,その性能を重要視して評価する。
論文 参考訳(メタデータ) (2024-06-16T20:41:44Z) - Efficiently Exploring Large Language Models for Document-Level Machine Translation with In-context Learning [38.89119606657543]
文レベルの翻訳とは対照的に、文脈内学習に基づく大規模言語モデル(LLM)による文書レベルの翻訳(DOCMT)は2つの大きな課題に直面している。
本研究では,文脈認識型プロンプト法(CAP)を提案する。
様々なDOCMTタスクに対して広範な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-11T09:11:17Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
本稿では,トップ仮説のみに頼るのではなく,ASRシステムの格子出力を利用する手法を提案する。
音声質問応答と意図分類を網羅した文脈内学習実験により,LLMの音声書き起こしに対する弾力性について明らかにした。
論文 参考訳(メタデータ) (2024-01-05T17:58:10Z) - ALLURE: Auditing and Improving LLM-based Evaluation of Text using
Iterative In-Context-Learning [7.457517083017178]
大規模言語モデル(LLM)は、人間やAIが生成するテキストの評価に使用される。
実用性にもかかわらず、LSMは異なる障害モードを示し、徹底的な監査とテキスト評価機能の改善が必要である。
ここでは、大規模な言語モデルを理解するための体系的なアプローチであるALLUREを紹介します。
論文 参考訳(メタデータ) (2023-09-24T17:15:58Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLMは、大規模言語モデルの知識編集を評価するための新しいベンチマークである。
実験結果から, 生文書を用いた知識編集手法は, 良好な結果を得るには有効ではないことが示唆された。
論文 参考訳(メタデータ) (2023-08-19T09:17:19Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
本稿では,Large Language Models (LLM) と自動音声認識(ASR)システムの統合について検討する。
我々の主な焦点は、LLMのコンテキスト内学習機能を用いて、ASRシステムの性能を向上させる可能性を調査することである。
論文 参考訳(メタデータ) (2023-07-13T02:31:55Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
大言語モデル(LLM)は世界事実に関するパラメトリック知識を符号化する。
パラメトリック知識への依存は、文脈的手がかりを見落とし、文脈に敏感なNLPタスクにおいて誤った予測をもたらす可能性がある。
我々は, LLMの文脈的忠実度を, 知識の衝突と, 棄権による予測の2つの側面で評価し, 向上する。
論文 参考訳(メタデータ) (2023-03-20T17:54:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。