論文の概要: Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction
- arxiv url: http://arxiv.org/abs/2408.09746v1
- Date: Mon, 19 Aug 2024 07:18:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:24:19.918000
- Title: Enhanced Cascade Prostate Cancer Classifier in mp-MRI Utilizing Recall Feedback Adaptive Loss and Prior Knowledge-Based Feature Extraction
- Title(参考訳): リコールフィードバック適応損失と事前知識に基づく特徴抽出を利用したmp-MRIにおけるカスケード前立腺癌分類法の改善
- Authors: Kun Luo, Bowen Zheng, Shidong Lv, Jie Tao, Qiang Wei,
- Abstract要約: 本稿では, 先行知識を取り入れ, 不均一な医用サンプル分布の問題に対処し, mpMRIにおける高い解釈可能性を維持するソリューションを提案する。
まず,前立腺癌に対するPI-RADS基準をモデルトレーニングの診断情報として数学的にモデル化する,事前知識に基づく特徴抽出手法を提案する。
次に、極めて不均衡なデータ問題に対処するため、適応的リコールフィードバック損失を提案する。
第3に、前立腺癌を解釈可能な方法で異なるレベルに分類する拡張前立腺癌を設計する。
- 参考スコア(独自算出の注目度): 4.00189087655119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prostate cancer is the second most common cancer in males worldwide, and mpMRI is commonly used for diagnosis. However, interpreting mpMRI is challenging and requires expertise from radiologists. This highlights the urgent need for automated grading in mpMRI. Existing studies lack integration of clinical prior information and suffer from uneven training sample distribution due to prevalence. Therefore, we propose a solution that incorporates prior knowledge, addresses the issue of uneven medical sample distribution, and maintains high interpretability in mpMRI. Firstly, we introduce Prior Knowledge-Based Feature Extraction, which mathematically models the PI-RADS criteria for prostate cancer as diagnostic information into model training. Secondly, we propose Adaptive Recall Feedback Loss to address the extremely imbalanced data problem. This method adjusts the training dynamically based on accuracy and recall in the validation set, resulting in high accuracy and recall simultaneously in the testing set.Thirdly, we design an Enhanced Cascade Prostate Cancer Classifier that classifies prostate cancer into different levels in an interpretable way, which refines the classification results and helps with clinical intervention. Our method is validated through experiments on the PI-CAI dataset and outperforms other methods with a more balanced result in both accuracy and recall rate.
- Abstract(参考訳): 前立腺癌は世界で2番目に多いがんであり、mpMRIは一般的に診断に用いられる。
しかし、mpMRIの解釈は困難であり、放射線技師の専門知識を必要とする。
これはmpMRIにおける自動グレーティングの緊急性を強調している。
既存の研究では臨床事前情報の統合が欠如しており、有病率による不均一なトレーニングサンプル分布に悩まされている。
そこで我々は,先行知識を取り入れ,不均一な医用サンプル分布の問題に対処し,mpMRIにおける高い解釈可能性を維持するソリューションを提案する。
まず,前立腺癌に対するPI-RADS基準をモデルトレーニングの診断情報として数学的にモデル化する,事前知識に基づく特徴抽出手法を提案する。
次に、極めて不均衡なデータ問題に対処するため、適応的リコールフィードバック損失を提案する。
本手法は, 検査セットの精度とリコールに基づいて動的にトレーニングを調整し, 高い精度と同時リコールを実現し, 前立腺癌を解釈可能な方法で異なるレベルに分類する拡張カスケード前立腺癌分類器を設計し, 分類結果を洗練し, 臨床介入を支援する。
本手法はPI-CAIデータセットの実験により検証され,精度とリコール率の両面でバランスよく他の手法よりも優れている。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
DWIと臨床データからpCRを予測するための生理学的に分解されたDWI機械学習モデルPD-DWIを紹介する。
我々のモデルは、現在のリーダーボードの最良の結果と比較して、曲線下(AUC)の面積を大幅に改善します。
論文 参考訳(メタデータ) (2022-06-12T08:59:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Self-transfer learning via patches: A prostate cancer triage approach
based on bi-parametric MRI [1.3934382972253603]
前立腺癌(PCa)は世界で2番目に多いがんである。
現在のPCa診断経路は、かなりの過剰診断のコストがかかり、不必要な治療とさらなる検査に繋がる。
臨床的に有意な (cS) 病変と非有意な (ncS) 病変を区別するためのパッチベースの事前訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-07-22T17:02:38Z) - Computational Intelligence Approach to Improve the Classification
Accuracy of Brain Neoplasm in MRI Data [8.980876474818153]
本報告では、MRIデータにおける脳新生検出の2つの改善について述べる。
MRIデータにおける関心領域を改善するための高度な前処理技術を提案する。
特徴抽出にCNN、分類にSVM(Support Vector Machine)を使用したハイブリッド技術も提案されている。
論文 参考訳(メタデータ) (2021-01-24T06:45:26Z) - Deep learning in magnetic resonance prostate segmentation: A review and
a new perspective [4.453410156617238]
MR前立腺セグメンテーションにおける最先端のディープラーニングアルゴリズムについて概説する。
その限界と強みを議論することで、この分野に洞察を与えます。
MR前立腺セグメンテーションのための最適化された2次元U-Netを提案する。
論文 参考訳(メタデータ) (2020-11-16T08:58:38Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。