Machine Learning with Physics Knowledge for Prediction: A Survey
- URL: http://arxiv.org/abs/2408.09840v1
- Date: Mon, 19 Aug 2024 09:36:07 GMT
- Title: Machine Learning with Physics Knowledge for Prediction: A Survey
- Authors: Joe Watson, Chen Song, Oliver Weeger, Theo Gruner, An T. Le, Kay Hansel, Ahmed Hendawy, Oleg Arenz, Will Trojak, Miles Cranmer, Carlo D'Eramo, Fabian Bülow, Tanmay Goyal, Jan Peters, Martin W. Hoffman,
- Abstract summary: This survey examines the broad suite of methods and models for combining machine learning with physics knowledge for prediction and forecast.
The survey has two parts. The first considers incorporating physics knowledge on an architectural level through objective functions, structured predictive models, and data augmentation.
The second considers data as physics knowledge, which motivates looking at multi-task, meta, and contextual learning as an alternative approach to incorporating physics knowledge in a data-driven fashion.
- Score: 16.96920919164813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This survey examines the broad suite of methods and models for combining machine learning with physics knowledge for prediction and forecast, with a focus on partial differential equations. These methods have attracted significant interest due to their potential impact on advancing scientific research and industrial practices by improving predictive models with small- or large-scale datasets and expressive predictive models with useful inductive biases. The survey has two parts. The first considers incorporating physics knowledge on an architectural level through objective functions, structured predictive models, and data augmentation. The second considers data as physics knowledge, which motivates looking at multi-task, meta, and contextual learning as an alternative approach to incorporating physics knowledge in a data-driven fashion. Finally, we also provide an industrial perspective on the application of these methods and a survey of the open-source ecosystem for physics-informed machine learning.
Related papers
- Learning Physical Dynamics for Object-centric Visual Prediction [7.395357888610685]
The ability to model the underlying dynamics of visual scenes and reason about the future is central to human intelligence.
This paper proposes an unsupervised object-centric prediction model that makes future predictions by learning visual dynamics between objects.
arXiv Detail & Related papers (2024-03-15T07:45:25Z) - A Survey on Physics Informed Reinforcement Learning: Review and Open
Problems [25.3906503332344]
We present a review of the literature on incorporating physics information, as known as physics priors, in reinforcement learning approaches.
We introduce a novel taxonomy with the reinforcement learning pipeline as the backbone to classify existing works.
This nascent field holds great potential for enhancing reinforcement learning algorithms by increasing their physical plausibility, precision, data efficiency, and applicability in real-world scenarios.
arXiv Detail & Related papers (2023-09-05T02:45:18Z) - Efficient Surrogate Models for Materials Science Simulations: Machine
Learning-based Prediction of Microstructure Properties [0.0]
Several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models.
We develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science.
arXiv Detail & Related papers (2023-09-01T07:29:44Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data.
We present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge.
arXiv Detail & Related papers (2022-11-15T11:34:30Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
We propose a physics-informed reinforcement learning strategy for fluid perception and reasoning from observations.
We develop a method for the tracking (perception) and analysis (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera.
arXiv Detail & Related papers (2022-03-11T07:01:23Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.