Physics-informed machine learning: A mathematical framework with applications to time series forecasting
- URL: http://arxiv.org/abs/2507.08906v1
- Date: Fri, 11 Jul 2025 11:47:09 GMT
- Title: Physics-informed machine learning: A mathematical framework with applications to time series forecasting
- Authors: Nathan Doumèche,
- Abstract summary: We study the properties of physics-informed neural networks (PINNs) in terms of approximation, consistency, overfitting, and convergence.<n>The second part explores industrial applications in forecasting energy signals during atypical periods.<n>We introduce a physics-constrained framework for designing and enforcing constraints in time series.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed machine learning (PIML) is an emerging framework that integrates physical knowledge into machine learning models. This physical prior often takes the form of a partial differential equation (PDE) system that the regression function must satisfy. In the first part of this dissertation, we analyze the statistical properties of PIML methods. In particular, we study the properties of physics-informed neural networks (PINNs) in terms of approximation, consistency, overfitting, and convergence. We then show how PIML problems can be framed as kernel methods, making it possible to apply the tools of kernel ridge regression to better understand their behavior. In addition, we use this kernel formulation to develop novel physics-informed algorithms and implement them efficiently on GPUs. The second part explores industrial applications in forecasting energy signals during atypical periods. We present results from the Smarter Mobility challenge on electric vehicle charging occupancy and examine the impact of mobility on electricity demand. Finally, we introduce a physics-constrained framework for designing and enforcing constraints in time series, applying it to load forecasting and tourism forecasting in various countries.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-informed kernel learning [7.755962782612672]
We propose a tractable estimator that minimizes the physics-informed risk function.
We show that PIKL can outperform physics-informed neural networks in terms of both accuracy and computation time.
arXiv Detail & Related papers (2024-09-20T06:55:20Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints.
The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models.
This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control.
arXiv Detail & Related papers (2023-06-24T05:24:48Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - AdjointNet: Constraining machine learning models with physics-based
codes [0.17205106391379021]
This paper proposes a physics constrained machine learning framework, AdjointNet, allowing domain scientists to embed their physics code in neural network training.
We show that the proposed AdjointNet framework can be used for parameter estimation (and uncertainty quantification by extension) and experimental design using active learning.
arXiv Detail & Related papers (2021-09-08T22:43:44Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Applying physics-based loss functions to neural networks for improved
generalizability in mechanics problems [3.655021726150368]
Informed Machine Learning (PIML) has gained momentum in the last 5 years with scientists and researchers to utilize the benefits afforded by advances in machine learning.
In this work a new approach to utilizing PIML is discussed that deals with the use of physics-based loss functions.
arXiv Detail & Related papers (2021-04-30T20:31:09Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.