論文の概要: Mask in the Mirror: Implicit Sparsification
- arxiv url: http://arxiv.org/abs/2408.09966v2
- Date: Wed, 12 Feb 2025 14:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:45:50.241535
- Title: Mask in the Mirror: Implicit Sparsification
- Title(参考訳): 鏡のマスク:暗黙のスパシフィケーション
- Authors: Tom Jacobs, Rebekka Burkholz,
- Abstract要約: 連続スパシフィケーション戦略は、ニューラルネットワークの推論コストとメモリ要求を減らす最も効果的な方法の1つである。
彼らの成功の重要な要因は、マスク変数とウェイト変数の両方を共同学習することによって引き起こされる暗黙の$L_1$正規化である。
本稿では, 学習力学を解析し, 初期連続スパシフィケーションが暗黙の$L$正規化によって支配されていることを明らかにすることによって, この観察を理論的に説明する。
本稿では,この暗黙バイアスの強度を動的に制御する手法を提案する。
- 参考スコア(独自算出の注目度): 16.69937899343079
- License:
- Abstract: Continuous sparsification strategies are among the most effective methods for reducing the inference costs and memory demands of large-scale neural networks. A key factor in their success is the implicit $L_1$ regularization induced by jointly learning both mask and weight variables, which has been shown experimentally to outperform explicit $L_1$ regularization. We provide a theoretical explanation for this observation by analyzing the learning dynamics, revealing that early continuous sparsification is governed by an implicit $L_2$ regularization that gradually transitions to an $L_1$ penalty over time. Leveraging this insight, we propose a method to dynamically control the strength of this implicit bias. Through an extension of the mirror flow framework, we establish convergence and optimality guarantees in the context of underdetermined linear regression. Our theoretical findings may be of independent interest, as we demonstrate how to enter the rich regime and show that the implicit bias can be controlled via a time-dependent Bregman potential. To validate these insights, we introduce PILoT, a continuous sparsification approach with novel initialization and dynamic regularization, which consistently outperforms baselines in standard experiments.
- Abstract(参考訳): 大規模ニューラルネットワークの推論コストとメモリ要求を低減するための、継続的スペーシフィケーション戦略は、最も効果的な方法のひとつである。
彼らの成功の鍵となる要因は、マスク変数とウェイト変数の両方を共同学習することによって引き起こされる暗黙的な$L_1$正規化であり、これは明示的な$L_1$正規化を上回るように実験的に示されている。
本研究では, 学習力学を解析し, 初期連続スパシフィケーションは暗黙の$L_2$正規化によって制御され, 時間とともに徐々に$L_1$ペナルティへと移行することを明らかにする。
この知見を利用して,この暗黙バイアスの強度を動的に制御する手法を提案する。
ミラーフローフレームワークの拡張により、過小決定線形回帰の文脈において収束性と最適性を保証する。
我々の理論的な発見は、豊かな体制に入る方法を示し、暗黙の偏見は時間依存のブレグマンポテンシャルによって制御できることを示すため、独立した関心を持つかもしれない。
これらの知見を検証するために,新しい初期化と動的正則化を備えた連続スパシフィケーション手法PILoTを導入する。
関連論文リスト
- Regularization for Adversarial Robust Learning [18.46110328123008]
我々は,$phi$-divergence正規化を分散ロバストなリスク関数に組み込む,対角訓練のための新しい手法を開発した。
この正規化は、元の定式化と比較して計算の顕著な改善をもたらす。
本研究では,教師付き学習,強化学習,文脈学習において提案手法の有効性を検証し,様々な攻撃に対して最先端の性能を示す。
論文 参考訳(メタデータ) (2024-08-19T03:15:41Z) - Distributionally Robust Optimization with Bias and Variance Reduction [9.341215359733601]
勾配に基づくアルゴリズムであるProspectは、スムーズな正規化損失に対する線形収束を享受していることを示す。
また、勾配法のようなベースラインよりも2~3$times$早く収束できることも示している。
論文 参考訳(メタデータ) (2023-10-21T00:03:54Z) - Understanding Contrastive Learning via Distributionally Robust
Optimization [29.202594242468678]
本研究は,類似のセマンティクス(ラベルなど)を負のサンプルとして含むサンプリングバイアスに対するコントラッシブラーニング(CL)の固有の耐性を明らかにする。
本研究は,分散ロバスト最適化 (DRO) のレンズを用いてCLを解析することにより,この研究ギャップを橋渡しし,いくつかの重要な知見を得る。
また, CLの過保守性や異常値に対する感受性などの潜在的な欠点を同定し, これらの問題を緩和するための新しいAdjusted InfoNCE損失(ADNCE)を導入する。
論文 参考訳(メタデータ) (2023-10-17T07:32:59Z) - Online Learning with Adversaries: A Differential-Inclusion Analysis [52.43460995467893]
我々は,完全に非同期なオンラインフェデレート学習のための観察行列ベースのフレームワークを提案する。
我々の主な結果は、提案アルゴリズムがほぼ確実に所望の平均$mu.$に収束することである。
新たな差分包摂型2時間スケール解析を用いて,この収束を導出する。
論文 参考訳(メタデータ) (2023-04-04T04:32:29Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
Emphstateのバリューベースラインが、オン・ポリティクスを可能にしていることを示す。
世界的な最適な政策勾配(NPG)に収束する。
O (1/t) レート勾配でのポリシー。
値ベースラインの主な効果は、その分散ではなく、更新のアグレッシブさをthabfreduceすることにある。
論文 参考訳(メタデータ) (2023-01-16T06:28:00Z) - Robust Imitation via Mirror Descent Inverse Reinforcement Learning [18.941048578572577]
本稿では,制約付き凸問題の反復解である報酬関数列を予測することを提案する。
提案したミラー降下更新規則は,ブレグマンの発散を最小化できることを示す。
我々のIRL法は, 既存手法よりも高い性能を示した。
論文 参考訳(メタデータ) (2022-10-20T12:25:21Z) - Globally Convergent Policy Search over Dynamic Filters for Output
Estimation [64.90951294952094]
我々は,大域的に最適な$textitdynamic$ filterに収束する最初の直接ポリシー探索アルゴリズム凸を導入する。
我々は、情報化が前述の優越性を克服していることを示す。
論文 参考訳(メタデータ) (2022-02-23T18:06:20Z) - DR3: Value-Based Deep Reinforcement Learning Requires Explicit
Regularization [125.5448293005647]
教師付き学習で見られるSGDの暗黙的な正則化効果が、オフラインの深いRLでは有害である可能性について論じる。
我々の理論的解析は、暗黙正則化の既存のモデルが時間差分学習に適用された場合、導出正規化器は退化解を好むことを示している。
我々は、この暗黙的正則化の望ましくない効果に対処する、DR3と呼ばれる単純で効果的な明示的正則化器を提案する。
論文 参考訳(メタデータ) (2021-12-09T06:01:01Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - A Random Matrix Theory Approach to Damping in Deep Learning [0.7614628596146599]
深層学習における適応的勾配法と非適応的勾配法との違いは推定ノイズの増加に起因すると推測する。
線形縮退推定にインスパイアされた2次オプティマイザのためのランダム行列理論に基づくダンピング学習器を開発した。
論文 参考訳(メタデータ) (2020-11-15T18:19:42Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。