論文の概要: Dynamic Label Injection for Imbalanced Industrial Defect Segmentation
- arxiv url: http://arxiv.org/abs/2408.10031v1
- Date: Mon, 19 Aug 2024 14:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:52:57.656385
- Title: Dynamic Label Injection for Imbalanced Industrial Defect Segmentation
- Title(参考訳): 不均衡な産業欠陥分割のための動的ラベル注入
- Authors: Emanuele Caruso, Francesco Pelosin, Alessandro Simoni, Marco Boschetti,
- Abstract要約: 入力バッチに一様分布を課す動的ラベル注入(DLI)アルゴリズムを提案する。
提案アルゴリズムは,ポアソンをベースとしたシームレスな画像クローニングとカット・ペースト技術を組み合わせて,現在のバッチ欠陥分布を計算し,欠陥を転送することで再バランスする。
- 参考スコア(独自算出の注目度): 42.841736467487785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a simple yet effective method to tackle the problem of imbalanced multi-class semantic segmentation in deep learning systems. One of the key properties for a good training set is the balancing among the classes. When the input distribution is heavily imbalanced in the number of instances, the learning process could be hindered or difficult to carry on. To this end, we propose a Dynamic Label Injection (DLI) algorithm to impose a uniform distribution in the input batch. Our algorithm computes the current batch defect distribution and re-balances it by transferring defects using a combination of Poisson-based seamless image cloning and cut-paste techniques. A thorough experimental section on the Magnetic Tiles dataset shows better results of DLI compared to other balancing loss approaches also in the challenging weakly-supervised setup. The code is available at https://github.com/covisionlab/dynamic-label-injection.git
- Abstract(参考訳): 本研究では,ディープラーニングシステムにおける不均衡な多クラスセマンティックセマンティックセグメンテーションの問題に対処するための,シンプルかつ効果的な手法を提案する。
優れたトレーニングセットの重要な特性の1つは、クラス間のバランスです。
入力分布がインスタンス数で非常に不均衡な場合、学習プロセスは妨げられるか、実行が困難になる可能性がある。
そこで本稿では,動的ラベルインジェクション(DLI)アルゴリズムを提案する。
提案アルゴリズムは,ポアソンをベースとしたシームレスな画像クローニングとカット・ペースト技術を組み合わせることで,現在のバッチ欠陥分布を計算し,欠陥を転送することで再バランスする。
Magnetic Tilesデータセットの徹底的な実験セクションでは、脆弱な教師付きセットアップにおいても、他のバランシング損失アプローチと比較して、DLIのより良い結果が示されている。
コードはhttps://github.com/covisionlab/dynamic-label-injection.gitで公開されている。
関連論文リスト
- Flexible Distribution Alignment: Towards Long-tailed Semi-supervised Learning with Proper Calibration [18.376601653387315]
Longtailed semi-supervised learning (LTSSL)は、半教師付きアプリケーションのための実践的なシナリオである。
この問題は、ラベル付きとラベルなしのクラス分布の相違によってしばしば悪化する。
本稿では,新しい適応ロジット調整型損失フレームワークFlexDAを紹介する。
論文 参考訳(メタデータ) (2023-06-07T17:50:59Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルのパフォーマンスを向上させるという大きな約束を示している。
我々は、ラベル付きデータとラベルなしデータの両方で不均衡なクラス分散が発生する不均衡SSLという、より現実的で困難な設定について検討する。
我々は、ラベル付きデータを擬似ラベルで単純に補うことで、データの不均衡に取り組む単純なベースライン、SimiSについて研究する。
論文 参考訳(メタデータ) (2022-11-20T21:18:41Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
深層学習におけるデータ不均衡やラベルノイズ問題に対処するための証明可能な手法(ABSGD)を提案する。
本手法は運動量SGDの簡易な修正であり,各試料に個別の重み付けを行う。
ABSGDは追加コストなしで他の堅牢な損失と組み合わせられるほど柔軟である。
論文 参考訳(メタデータ) (2020-12-13T03:41:52Z) - Posterior Re-calibration for Imbalanced Datasets [33.379680556475314]
トレーニングラベルの分布が極めて不均衡な場合、ニューラルネットワークは性能が良くない。
我々は、KL分割に基づく最適化によって解決できる訓練後の事前バランス手法を導出する。
6つの異なるデータセットと5つの異なるアーキテクチャで得られた結果は、芸術的正確性を示している。
論文 参考訳(メタデータ) (2020-10-22T15:57:14Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
Pseudo-label (DARP) アルゴリズムの分散アライメント・リファナリーを開発する。
DARPは最先端のSSLスキームと有効かつ効率的に互換性があることを示す。
論文 参考訳(メタデータ) (2020-07-17T09:16:05Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
アクティブラーニング(AL)は、データ要求型ディープニューラルネットワーク(DNN)のラベル付け作業を最小化する
自己教師型フィッシャーカーネル(FK)を用いた特徴密度マッチングのための低複雑さ手法を提案する。
本手法は,MNIST,SVHN,ImageNetの分類において,処理の1/10しか必要とせず,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-01T03:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。