論文の概要: Modelling the Distribution of Human Motion for Sign Language Assessment
- arxiv url: http://arxiv.org/abs/2408.10073v1
- Date: Mon, 19 Aug 2024 15:16:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:43:09.859701
- Title: Modelling the Distribution of Human Motion for Sign Language Assessment
- Title(参考訳): 手話評価のための人間の動き分布のモデル化
- Authors: Oliver Cory, Ozge Mercanoglu Sincan, Matthew Vowels, Alessia Battisti, Franz Holzknecht, Katja Tissi, Sandra Sidler-Miserez, Tobias Haug, Sarah Ebling, Richard Bowden,
- Abstract要約: 記号言語アセスメント(SLA)ツールは、言語学習や未開発に役立ちます。
本稿では,人間の動作の自然な分布をモデル化し,手話(SL)の理解度を評価するための新しいSLAツールを提案する。
- 参考スコア(独自算出の注目度): 21.428481191989793
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sign Language Assessment (SLA) tools are useful to aid in language learning and are underdeveloped. Previous work has focused on isolated signs or comparison against a single reference video to assess Sign Languages (SL). This paper introduces a novel SLA tool designed to evaluate the comprehensibility of SL by modelling the natural distribution of human motion. We train our pipeline on data from native signers and evaluate it using SL learners. We compare our results to ratings from a human raters study and find strong correlation between human ratings and our tool. We visually demonstrate our tools ability to detect anomalous results spatio-temporally, providing actionable feedback to aid in SL learning and assessment.
- Abstract(参考訳): 記号言語アセスメント(SLA)ツールは、言語学習を支援するのに役立ち、未開発である。
従来の研究は、手話(SL)を評価するために、孤立したサインや単一の参照ビデオとの比較に重点を置いてきた。
本稿では,人間の動作の自然な分布をモデル化し,SLの理解度を評価するための新しいSLAツールを提案する。
我々は、ネイティブシグナからのデータに基づいてパイプラインをトレーニングし、SL学習者を用いて評価する。
実験結果とレーティングの結果を比較し,評価結果とツールとの間に強い相関関係が認められた。
SL学習と評価を支援するために,時空間で異常な結果を検出するツールを視覚的に示す。
関連論文リスト
- From Babbling to Fluency: Evaluating the Evolution of Language Models in Terms of Human Language Acquisition [6.617999710257379]
本稿では,LMの能力を評価するための3段階のフレームワークを提案する。
言語研究の手法を用いて, LMの生成能力を評価する。
論文 参考訳(メタデータ) (2024-10-17T06:31:49Z) - A Comparative Study of Continuous Sign Language Recognition Techniques [1.534667887016089]
CSLR(Continuous Sign Language Recognition)は、ポーズなしで連続的に実行される手話ジェスチャーのシーケンスの解釈に焦点を当てる。
本研究では,近年の深層学習C SLR手法を実証的に評価し,その性能を様々なデータセットや手話で評価する。
論文 参考訳(メタデータ) (2024-06-18T07:51:44Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z) - The Sem-Lex Benchmark: Modeling ASL Signs and Their Phonemes [6.0179345110920455]
本稿では,ASL(American Sign Language)モデリングのための新しいリソースであるSem-Lex Benchmarkを紹介する。
Benchmarkは、現在最大規模で、聴覚障害のASL署名者による84万本以上の単独のサイン制作のビデオで構成されており、インフォームド・コンセントが与えられ、補償を受けた。
ASL-LEXにおける言語情報を活用する一連の実験を行い、Sem-Lex Benchmark(ISR)の実用性と公正性を評価した。
論文 参考訳(メタデータ) (2023-09-30T00:25:43Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z) - Building Low-Resource NER Models Using Non-Speaker Annotation [58.78968578460793]
言語横断的な手法はこれらの懸念に対処する上で顕著な成功を収めた。
本稿では,Non-Speaker''(NS)アノテーションを用いた低リソース名前付きエンティティ認識(NER)モデル構築のための補完的アプローチを提案する。
NSアノテータの使用は、現代の文脈表現上に構築された言語間メソッドよりも、一貫した結果が得られることを示す。
論文 参考訳(メタデータ) (2020-06-17T03:24:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。