論文の概要: AI Transparency in Academic Search Systems: An Initial Exploration
- arxiv url: http://arxiv.org/abs/2408.10229v1
- Date: Fri, 2 Aug 2024 19:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:21:10.739546
- Title: AI Transparency in Academic Search Systems: An Initial Exploration
- Title(参考訳): 学術検索システムにおけるAIの透明性:最初の探索
- Authors: Yifan Liu, Peter Sullivan, Luanne Sinnamon,
- Abstract要約: 本研究は,AIを活用した10種類の学術検索システムのウェブサイトの質的コンテンツ分析手法を用いた。
5つはメカニズムに関する詳細な情報を提供し、3つは部分的な情報を提供し、2つはほとんど情報を提供しない。
- 参考スコア(独自算出の注目度): 10.115932820429313
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As AI-enhanced academic search systems become increasingly popular among researchers, investigating their AI transparency is crucial to ensure trust in the search outcomes, as well as the reliability and integrity of scholarly work. This study employs a qualitative content analysis approach to examine the websites of a sample of 10 AI-enhanced academic search systems identified through university library guides. The assessed level of transparency varies across these systems: five provide detailed information about their mechanisms, three offer partial information, and two provide little to no information. These findings indicate that the academic community is recommending and using tools with opaque functionalities, raising concerns about research integrity, including issues of reproducibility and researcher responsibility.
- Abstract(参考訳): AIによって強化された学術検索システムが研究者の間で人気を増すにつれて、彼らのAI透明性の調査は、検索結果への信頼と、学術作品の信頼性と完全性を保証するために不可欠である。
本研究は,大学図書館案内書から特定された10種類のAIを活用した学術検索システムのウェブサイトを質的コンテンツ分析手法を用いて分析する。
5つはメカニズムに関する詳細な情報を提供し、3つは部分的な情報を提供し、2つはほとんど情報を提供しない。
これらの結果は,研究コミュニティが不透明な機能を持つツールを推奨・使用し,再現性の問題や研究者の責任など研究の整合性への懸念を高めていることを示している。
関連論文リスト
- Establishing and Evaluating Trustworthy AI: Overview and Research Challenges [4.806063079434686]
一部のAIシステムは予期せぬ結果または望ましくない結果をもたらすか、疑わしい方法で使用された。
本稿では,信頼に値するAIの既存の概念を6つの要件に従って合成する。
幅広い読者の参考として、そして将来の研究方向性の基礎として機能することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T06:05:52Z) - A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges [0.0]
知識組織システム(KOS)は、情報の分類、管理、検索において基本的な役割を果たす。
本稿は、現在のKOSに関する総合的な研究成果を学術分野に提示することを目的としている。
我々は、スコープ、構造、使用法、および他のKOSへのリンクの5つの主要な次元に基づいて45のKOSを分析した。
論文 参考訳(メタデータ) (2024-09-06T17:54:43Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - How good are my search strings? Reflections on using an existing review
as a quasi-gold standard [1.7827643249624088]
本研究は,準ゴールド標準(QGS)を用いた探索文字列構築と探索検証に関する問題に対する意識を高めることを目的とする。
文献ではQGS品質評価の問題はあまり注目されておらず,SLSにおける自動検索の有効性が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-02-16T19:36:19Z) - Hierarchical Tree-structured Knowledge Graph For Academic Insight Survey [11.556954590485319]
調査は、研究トレーニングを欠いている初心者研究者にとって、常に課題となっている。
本研究は,階層的な木構造知識グラフを確立することにより,初心者研究者を対象とした研究インサイトサーベイを支援することを目的とする。
論文 参考訳(メタデータ) (2024-02-07T13:54:06Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
本稿では,研究論文を対象とした動的読解インタフェースの自動作成を目的としたセマンティック・リーダー・プロジェクトについて述べる。
10のプロトタイプインターフェースが開発され、300人以上の参加者と現実世界のユーザが読書体験を改善している。
本論文は,研究論文を読む際,学者と公衆の面を巡って構築する。
論文 参考訳(メタデータ) (2023-03-25T02:47:09Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
異なる地域に数百の仮想エージェントを配置した8つの検索エンジンの実験を行った。
複数のデータ収集にまたがる研究インフラの性能を実証する。
仮想エージェントは,アルゴリズムの性能を長時間にわたって監視するための,有望な場所である,と結論付けている。
論文 参考訳(メタデータ) (2021-06-10T15:49:58Z) - Wizard of Search Engine: Access to Information Through Conversations
with Search Engines [58.53420685514819]
我々は3つの側面からCISの研究を促進するために努力している。
目的検出(ID)、キーフレーズ抽出(KE)、行動予測(AP)、クエリ選択(QS)、通過選択(PS)、応答生成(RG)の6つのサブタスクでCIS用のパイプラインを定式化する。
検索エンジンのウィザード(WISE)と呼ばれるベンチマークデータセットをリリースし、CISのすべての側面について包括的かつ詳細な調査を可能にします。
論文 参考訳(メタデータ) (2021-05-18T06:35:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。