論文の概要: Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
- arxiv url: http://arxiv.org/abs/2411.09973v1
- Date: Fri, 15 Nov 2024 06:05:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:29.264623
- Title: Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
- Title(参考訳): 信頼できるAIの確立と評価 - 概要と研究課題
- Authors: Dominik Kowald, Sebastian Scher, Viktoria Pammer-Schindler, Peter Müllner, Kerstin Waxnegger, Lea Demelius, Angela Fessl, Maximilian Toller, Inti Gabriel Mendoza Estrada, Ilija Simic, Vedran Sabol, Andreas Truegler, Eduardo Veas, Roman Kern, Tomislav Nad, Simone Kopeinik,
- Abstract要約: 一部のAIシステムは予期せぬ結果または望ましくない結果をもたらすか、疑わしい方法で使用された。
本稿では,信頼に値するAIの既存の概念を6つの要件に従って合成する。
幅広い読者の参考として、そして将来の研究方向性の基礎として機能することを目的としている。
- 参考スコア(独自算出の注目度): 4.806063079434686
- License:
- Abstract: Artificial intelligence (AI) technologies (re-)shape modern life, driving innovation in a wide range of sectors. However, some AI systems have yielded unexpected or undesirable outcomes or have been used in questionable manners. As a result, there has been a surge in public and academic discussions about aspects that AI systems must fulfill to be considered trustworthy. In this paper, we synthesize existing conceptualizations of trustworthy AI along six requirements: 1) human agency and oversight, 2) fairness and non-discrimination, 3) transparency and explainability, 4) robustness and accuracy, 5) privacy and security, and 6) accountability. For each one, we provide a definition, describe how it can be established and evaluated, and discuss requirement-specific research challenges. Finally, we conclude this analysis by identifying overarching research challenges across the requirements with respect to 1) interdisciplinary research, 2) conceptual clarity, 3) context-dependency, 4) dynamics in evolving systems, and 5) investigations in real-world contexts. Thus, this paper synthesizes and consolidates a wide-ranging and active discussion currently taking place in various academic sub-communities and public forums. It aims to serve as a reference for a broad audience and as a basis for future research directions.
- Abstract(参考訳): 人工知能(AI)技術(-)は現代の生活を形作り、幅広い分野のイノベーションを推進している。
しかし、いくつかのAIシステムは予期せぬ結果または望ましくない結果をもたらしたり、疑わしい方法で使われたりしている。
その結果、AIシステムが信頼に値するものとみなすためには、AIシステムが果たすべき側面について、公的な、学術的な議論が急増している。
本稿では、信頼に値するAIの既存の概念化を6つの要件に沿って合成する。
1)人事機関及び監視
2)公正性及び非差別性
3)透明性と説明可能性。
4)頑丈さと正確性。
5) プライバシーとセキュリティ
6) 説明責任。
それぞれに定義を提供し、その確立と評価方法を説明し、要件固有の研究課題について議論する。
最後に、この分析を、要件全体にわたる包括的な研究課題を特定し、結論づける。
1)学際研究、
2)概念的明確性
3)文脈依存性
4)進化するシステムにおけるダイナミクス、及び
5)現実世界の文脈における調査。
そこで本稿では,様々な学術サブコミュニティやフォーラムで現在行われている広範囲かつ活発な議論を合成し,統合する。
幅広い読者の参考として、そして将来の研究方向性の基礎として機能することを目的としている。
関連論文リスト
- Unraveling the Nuances of AI Accountability: A Synthesis of Dimensions Across Disciplines [0.0]
我々は、複数の分野にわたる現在の研究をレビューし、AIの文脈における説明責任の重要な側面を特定する。
13の次元と追加の説明責任ファシリテータを持つ6つのテーマを明らかにする。
論文 参考訳(メタデータ) (2024-10-05T18:08:39Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
我々は、AIバイアス、定義、検出と緩和の方法、およびバイアスを評価するメトリクスの複雑さをレビューし、議論する。
また、人間中心の意思決定のさまざまな領域におけるAIの信頼性と広範な適用に関して、オープンな課題についても論じる。
論文 参考訳(メタデータ) (2024-08-28T06:04:25Z) - Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
人工知能(Embodied AI)は、人工知能(AGI)の実現に不可欠である
MLMとWMは、その顕著な知覚、相互作用、推論能力のために、大きな注目を集めている。
本調査では,Embodied AIの最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-07-09T14:14:47Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - Ten Hard Problems in Artificial Intelligence We Must Get Right [72.99597122935903]
AIの約束を阻止し、AIのリスクを引き起こすAI2050の「ハード問題」について検討する。
それぞれの問題について、その領域を概説し、最近の重要な作業を特定し、今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-06T23:16:41Z) - Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond [0.0]
この総合的な研究論文は、AI技術の急速な進化と密接に関連する倫理的次元を厳格に調査する。
この記事の中心は、透明性、エクイティ、回答可能性、人間中心の指向といった価値を、慎重に強調するために作られた、良心的なAIフレームワークの提案である。
この記事は、グローバルに標準化されたAI倫理の原則とフレームワークに対するプレッシャーの必要性を明確に強調している。
論文 参考訳(メタデータ) (2023-08-31T18:12:12Z) - Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation [22.921683578188645]
私たちは、真に信頼できるAIを達成することは、システムのライフサイクルの一部であるすべてのプロセスとアクターの信頼性を懸念する、と論じています。
AIベースのシステムの倫理的利用と開発のためのグローバルな原則、AI倫理に対する哲学的な見解、AI規制に対するリスクベースのアプローチである。
信頼できるAIに関する私たちの学際的なビジョンは、最近発表されたAIの未来に関するさまざまな見解に関する議論で頂点に達した。
論文 参考訳(メタデータ) (2023-05-02T09:49:53Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
人工知能(AI)システムのロバスト性はいまだ解明されておらず、大規模な採用を妨げる重要な問題となっている。
本稿では,基本的・応用的両面から文献を整理・記述する3つの概念を紹介する。
我々は、人間が提供できる必要な知識を考慮して、AIの堅牢性を評価し、向上する上で、人間の中心的な役割を強調します。
論文 参考訳(メタデータ) (2022-10-17T10:00:51Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。