Multi-Source EEG Emotion Recognition via Dynamic Contrastive Domain Adaptation
- URL: http://arxiv.org/abs/2408.10235v2
- Date: Mon, 23 Dec 2024 20:38:19 GMT
- Title: Multi-Source EEG Emotion Recognition via Dynamic Contrastive Domain Adaptation
- Authors: Yun Xiao, Yimeng Zhang, Xiaopeng Peng, Shuzheng Han, Xia Zheng, Dingyi Fang, Xiaojiang Chen,
- Abstract summary: We introduce a multi-source dynamic contrastive domain adaptation method based on differential entropy (DE) features.<n>Our model outperforms several alternative domain adaptation methods in recognition accuracy, inter-class margin, and intra-class compactness.<n>Our study also suggests greater emotional sensitivity in the frontal and parietal brain lobes.
- Score: 17.956642824289453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) provides reliable indications of human cognition and mental states. Accurate emotion recognition from EEG remains challenging due to signal variations among individuals and across measurement sessions. We introduce a multi-source dynamic contrastive domain adaptation method (MS-DCDA) based on differential entropy (DE) features, in which coarse-grained inter-domain and fine-grained intra-class adaptations are modeled through a multi-branch contrastive neural network and contrastive sub-domain discrepancy learning. Leveraging domain knowledge from each individual source and a complementary source ensemble, our model uses dynamically weighted learning to achieve an optimal tradeoff between domain transferability and discriminability. The proposed MS-DCDA model was evaluated using the SEED and SEED-IV datasets, achieving respectively the highest mean accuracies of $90.84\%$ and $78.49\%$ in cross-subject experiments as well as $95.82\%$ and $82.25\%$ in cross-session experiments. Our model outperforms several alternative domain adaptation methods in recognition accuracy, inter-class margin, and intra-class compactness. Our study also suggests greater emotional sensitivity in the frontal and parietal brain lobes, providing insights for mental health interventions, personalized medicine, and preventive strategies.
Related papers
- Towards Practical Emotion Recognition: An Unsupervised Source-Free Approach for EEG Domain Adaptation [0.5755004576310334]
We propose a novel SF-UDA approach for EEG-based emotion classification across domains.
We introduce Dual-Loss Adaptive Regularization (DLAR) to minimize prediction discrepancies and align predictions with expected pseudo-labels.
Our approach significantly outperforms state-of-the-art methods, achieving 65.84% accuracy when trained on DEAP and tested on SEED.
arXiv Detail & Related papers (2025-03-26T14:29:20Z) - NeuroADDA: Active Discriminative Domain Adaptation in Connectomic [3.241925400160274]
We introduce NeuroADDA, a method that combines optimal domain selection with source-free active learning to adapt pretrained backbones to a new dataset.
NeuroADDA consistently outperforms training from scratch across diverse datasets and fine-tuning sample sizes.
arXiv Detail & Related papers (2025-03-08T12:40:30Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition [11.252832459891566]
We propose a novel non-deep transfer learning method, termed as Manifold-based Domain adaptation with Dynamic Distribution (MDDD)
The experimental results indicate that MDDD outperforms traditional non-deep learning methods, achieving an average improvement of 3.54%.
This suggests that MDDD could be a promising method for enhancing the utility and applicability of aBCIs in real-world scenarios.
arXiv Detail & Related papers (2024-04-24T03:08:25Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - MS-MDA: Multisource Marginal Distribution Adaptation for Cross-subject
and Cross-session EEG Emotion Recognition [14.065932956210336]
We propose a multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition.
First, we assume that different EEG data share the same low-level features, then we construct independent branches to adopt one-to-one domain adaptation and extract domain-specific features.
Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios.
arXiv Detail & Related papers (2021-07-16T07:19:54Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Dynamic Functional Connectivity and Graph Convolution Network for
Alzheimer's Disease Classification [0.7723181091241251]
Alzheimer's disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD.
In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively capture changes in the brain.
arXiv Detail & Related papers (2020-06-24T06:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.