NeRF-US: Removing Ultrasound Imaging Artifacts from Neural Radiance Fields in the Wild
- URL: http://arxiv.org/abs/2408.10258v2
- Date: Wed, 21 Aug 2024 00:52:28 GMT
- Title: NeRF-US: Removing Ultrasound Imaging Artifacts from Neural Radiance Fields in the Wild
- Authors: Rishit Dagli, Atsuhiro Hibi, Rahul G. Krishnan, Pascal N. Tyrrell,
- Abstract summary: Current methods for performing 3D reconstruction and novel view synthesis (NVS) in ultrasound imaging data often face severe artifacts when training NeRF-based approaches.
In this work, we introduced NeRF-US, which incorporates 3D-geometry guidance for border probability and scattering density into NeRF training.
- Score: 11.047805165425256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for performing 3D reconstruction and novel view synthesis (NVS) in ultrasound imaging data often face severe artifacts when training NeRF-based approaches. The artifacts produced by current approaches differ from NeRF floaters in general scenes because of the unique nature of ultrasound capture. Furthermore, existing models fail to produce reasonable 3D reconstructions when ultrasound data is captured or obtained casually in uncontrolled environments, which is common in clinical settings. Consequently, existing reconstruction and NVS methods struggle to handle ultrasound motion, fail to capture intricate details, and cannot model transparent and reflective surfaces. In this work, we introduced NeRF-US, which incorporates 3D-geometry guidance for border probability and scattering density into NeRF training, while also utilizing ultrasound-specific rendering over traditional volume rendering. These 3D priors are learned through a diffusion model. Through experiments conducted on our new "Ultrasound in the Wild" dataset, we observed accurate, clinically plausible, artifact-free reconstructions.
Related papers
- Hybrid NeRF-Stereo Vision: Pioneering Depth Estimation and 3D Reconstruction in Endoscopy [11.798218793025974]
We introduce an innovative pipeline using Neural Radiance Fields (NeRF) for 3D reconstruction.
Our approach utilizes a preliminary NeRF reconstruction that yields a coarse model, then creates a binocular scene within the reconstructed environment.
High-fidelity depth maps are generated from monocular endoscopic video of a realistic cranial phantom.
arXiv Detail & Related papers (2024-10-05T05:26:21Z) - UlRe-NeRF: 3D Ultrasound Imaging through Neural Rendering with Ultrasound Reflection Direction Parameterization [0.5837446811360741]
Traditional 3D ultrasound imaging methods have limitations such as fixed resolution, low storage efficiency, and insufficient contextual connectivity.
We propose a new model, UlRe-NeRF, which combines implicit neural networks and explicit ultrasound rendering architecture.
Experimental results demonstrate that the UlRe-NeRF model significantly enhances the realism and accuracy of high-fidelity ultrasound image reconstruction.
arXiv Detail & Related papers (2024-08-01T18:22:29Z) - Ultrasound Imaging based on the Variance of a Diffusion Restoration Model [7.360352432782388]
We propose a hybrid reconstruction method combining an ultrasound linear direct model with a learning-based prior coming from a generative Denoising Diffusion model.
We conduct experiments on synthetic, in-vitro, and in-vivo data, demonstrating the efficacy of our variance imaging approach in achieving high-quality image reconstructions.
arXiv Detail & Related papers (2024-03-22T16:10:38Z) - 3D Guidewire Shape Reconstruction from Monoplane Fluoroscopic Images [7.0968125126570625]
We propose a new method to reconstruct the 3D guidewire by utilizing CathSim, a state-of-the-art endovascular simulator.
Our 3D-FGRN delivers results on par with conventional triangulation from simulated monoplane fluoroscopic images.
arXiv Detail & Related papers (2023-11-19T03:20:42Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields [149.2296890464997]
We design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF.
WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.
arXiv Detail & Related papers (2023-08-09T09:24:56Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
We introduce DehazeNeRF as a framework that robustly operates in hazy conditions.
We demonstrate successful multi-view haze removal, novel view synthesis, and 3D shape reconstruction where existing approaches fail.
arXiv Detail & Related papers (2023-03-20T18:03:32Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.