On the Identifiability of Sparse ICA without Assuming Non-Gaussianity
- URL: http://arxiv.org/abs/2408.10353v1
- Date: Mon, 19 Aug 2024 18:51:42 GMT
- Title: On the Identifiability of Sparse ICA without Assuming Non-Gaussianity
- Authors: Ignavier Ng, Yujia Zheng, Xinshuai Dong, Kun Zhang,
- Abstract summary: We develop an identifiability theory that relies on second-order statistics without imposing further preconditions on the distribution of sources.
We propose two estimation methods based on second-order statistics and sparsity constraint.
- Score: 20.333908367541895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Independent component analysis (ICA) is a fundamental statistical tool used to reveal hidden generative processes from observed data. However, traditional ICA approaches struggle with the rotational invariance inherent in Gaussian distributions, often necessitating the assumption of non-Gaussianity in the underlying sources. This may limit their applicability in broader contexts. To accommodate Gaussian sources, we develop an identifiability theory that relies on second-order statistics without imposing further preconditions on the distribution of sources, by introducing novel assumptions on the connective structure from sources to observed variables. Different from recent work that focuses on potentially restrictive connective structures, our proposed assumption of structural variability is both considerably less restrictive and provably necessary. Furthermore, we propose two estimation methods based on second-order statistics and sparsity constraint. Experimental results are provided to validate our identifiability theory and estimation methods.
Related papers
- Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
Distributionally robust learning aims to control the worst-case statistical performance within an uncertainty set of candidate distributions.
We propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate.
Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.
arXiv Detail & Related papers (2024-07-09T13:56:34Z) - Generalizing Nonlinear ICA Beyond Structural Sparsity [15.450470872782082]
identifiability of nonlinear ICA is known to be impossible without additional assumptions.
Recent advances have proposed conditions on the connective structure from sources to observed variables, known as Structural Sparsity.
We show that even in cases with flexible grouping structures, appropriate identifiability results can be established.
arXiv Detail & Related papers (2023-11-01T21:36:15Z) - Large-Sample Properties of Non-Stationary Source Separation for Gaussian
Signals [2.2557806157585834]
We develop large-sample theory for NSS-JD, a popular method of non-stationary source separation.
We show that the consistency of the unmixing estimator and its convergence to a limiting Gaussian distribution at the standard square root rate are shown to hold.
Simulation experiments are used to verify the theoretical results and to study the impact of block length on the separation.
arXiv Detail & Related papers (2022-09-21T08:13:20Z) - Excess risk analysis for epistemic uncertainty with application to
variational inference [110.4676591819618]
We present a novel EU analysis in the frequentist setting, where data is generated from an unknown distribution.
We show a relation between the generalization ability and the widely used EU measurements, such as the variance and entropy of the predictive distribution.
We propose new variational inference that directly controls the prediction and EU evaluation performances based on the PAC-Bayesian theory.
arXiv Detail & Related papers (2022-06-02T12:12:24Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches.
We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework.
arXiv Detail & Related papers (2022-02-09T19:01:33Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.