Self-testing of multiple unsharpness parameters through sequential violations of non-contextual inequality
- URL: http://arxiv.org/abs/2408.10363v1
- Date: Mon, 19 Aug 2024 19:04:48 GMT
- Title: Self-testing of multiple unsharpness parameters through sequential violations of non-contextual inequality
- Authors: Rajdeep Paul, Souradeep Sasmal, A. K. Pan,
- Abstract summary: We put forth a protocol for self-testing of noisy quantum instruments.
We derive the optimal set of quantum violations without specifying the dimension of the quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The self-testing protocols refer to novel device-independent certification schemes wherein the devices are uncharacterised, and the dimension of the system remains unspecified. The optimal quantum violation of a Bell's inequality facilitates such self-testing. In this work, we put forth a protocol for self-testing of noisy quantum instruments, specifically, the unsharpness parameter of smeared projective measurements in any arbitrary dimension. Our protocol hinges on the sequential quantum violations of a bipartite Bell-type preparation non-contextual inequality, involving three measurement settings per party. First, we demonstrate that at most three sequential independent Bobs manifest simultaneous preparation contextuality with a single Alice through the violation of this inequality. Subsequently, we show that the sub-optimal sequential quantum violations of the non-contextual inequality form an optimal set, eventually enabling the self-testing of shared state, local measurements and unsharpness parameters of one party. Notably, we derive the optimal set of quantum violations without specifying the dimension of the quantum system, thereby circumventing the constraint that may arise due to Naimark's theorem. Furthermore, we extend our investigation to quantify the degree of incompatible measurements pertaining to the sequential observers, exploring how variations in the degree of incompatibility impact the values of unsharp parameters necessary for sequential quantum violation.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - Robust self-testing of the $m-$partite maximally entangled state and observables [0.0]
We propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality.
Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system.
arXiv Detail & Related papers (2024-08-20T11:03:37Z) - Device-independent self-testing of unsharp measurements [0.0]
Semi-device-independent certification of an unsharp instrument has recently been demonstrated.
We provide device-independent (DI) self-testing of the unsharp instrument through the quantum violation of two Bell inequalities.
arXiv Detail & Related papers (2023-11-08T06:34:47Z) - Certification of two-qubit quantum systems with temporal inequality [0.0]
Self-testing of quantum devices based on observed measurement statistics is a method to certify quantum systems using minimal resources.
We propose a self-testing protocol to certify the above two-qubit states and measurements without the assumption of compatibility conditions.
Our protocol is based on the observation of sequential correlations leading to the maximal violation of a temporal inequality derived from non-contextuality inequality.
arXiv Detail & Related papers (2023-07-13T12:07:55Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Certification of incompatible measurements using quantum steering [0.0]
We consider the problem of certification of quantum measurements with an arbitrary number of outcomes.
We propose a simple scheme for certifying any set of $d$-outcome projective measurements which do not share any common invariant proper subspace.
arXiv Detail & Related papers (2021-07-01T13:04:47Z) - Excluding false negative error in certification of quantum channels [68.8204255655161]
This work focuses on the scenario when the false negative error cannot occur, even if it leads to the growth of the probability of false positive error.
We establish a condition when it is possible to exclude false negative error after a finite number of queries to the quantum channel in parallel.
arXiv Detail & Related papers (2021-06-04T09:41:11Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Robust self-testing of steerable quantum assemblages and its
applications on device-independent quantum certification [0.0]
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing.
We propose a framework called "robust self-testing of steerable quantum assemblages"
Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved.
arXiv Detail & Related papers (2020-02-07T14:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.