論文の概要: Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2408.10537v2
- Date: Sat, 5 Oct 2024 19:37:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 06:33:42.073455
- Title: Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation
- Title(参考訳): 点群セマンティックセグメンテーションにおけるクラス不均衡の緩和のためのサブスペースプロトタイプガイダンス
- Authors: Jiawei Han, Kaiqi Liu, Wei Li, Guangzhi Chen,
- Abstract要約: 本稿では,サブスペースのプロトタイプガイダンス(textbfSPG)を用いて,セグメンテーションネットワークのトレーニングを指導する手法を提案する。
提案手法はセグメンテーション性能を大幅に向上し,最先端の手法を超越する。
- 参考スコア(独自算出の注目度): 23.250178208474928
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Point cloud semantic segmentation can significantly enhance the perception of an intelligent agent. Nevertheless, the discriminative capability of the segmentation network is influenced by the quantity of samples available for different categories. To mitigate the cognitive bias induced by class imbalance, this paper introduces a novel method, namely subspace prototype guidance (\textbf{SPG}), to guide the training of segmentation network. Specifically, the point cloud is initially separated into independent point sets by category to provide initial conditions for the generation of feature subspaces. The auxiliary branch which consists of an encoder and a projection head maps these point sets into separate feature subspaces. Subsequently, the feature prototypes which are extracted from the current separate subspaces and then combined with prototypes of historical subspaces guide the feature space of main branch to enhance the discriminability of features of minority categories. The prototypes derived from the feature space of main branch are also employed to guide the training of the auxiliary branch, forming a supervisory loop to maintain consistent convergence of the entire network. The experiments conducted on the large public benchmarks (i.e. S3DIS, ScanNet v2, ScanNet200, Toronto-3D) and collected real-world data illustrate that the proposed method significantly improves the segmentation performance and surpasses the state-of-the-art method. The code is available at \url{https://github.com/Javion11/PointLiBR.git}.
- Abstract(参考訳): ポイントクラウドセマンティックセグメンテーションは、インテリジェントエージェントの認識を著しく向上させる。
それでも、セグメンテーションネットワークの識別能力は、異なるカテゴリで利用可能なサンプルの量に影響される。
本稿では,クラス不均衡による認知バイアスを軽減するために,サブスペースのプロトタイプガイダンス(\textbf{SPG})を導入し,セグメンテーションネットワークのトレーニングを指導する。
具体的には、点雲は最初、特徴部分空間の生成の初期条件を提供するために、カテゴリごとに独立点集合に分離される。
補助分岐はエンコーダと投影ヘッドで構成され、これらの点集合を別個の特徴部分空間にマッピングする。
その後、現在分離している部分空間から抽出された特徴プロトタイプと過去の部分空間のプロトタイプが組み合わさって、メインブランチの機能空間をガイドし、マイノリティカテゴリの特徴の識別性を高める。
また、主枝の特徴空間から派生したプロトタイプを用いて補助枝の訓練を指導し、ネットワーク全体の一貫した収束を維持するための監督ループを形成する。
大規模な公開ベンチマーク(S3DIS, ScanNet v2, ScanNet200, Toronto-3D)で実施された実験により, 提案手法はセグメンテーション性能を大幅に改善し, 最先端の手法を上回ることを示す。
コードは \url{https://github.com/Javion11/PointLiBR.git} で公開されている。
関連論文リスト
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Boosting Few-shot 3D Point Cloud Segmentation via Query-Guided
Enhancement [30.017448714419455]
本稿では,PC-FSSモデルの改良手法を提案する。
従来のPC-FSSでは,クエリサンプルの新規クラスを識別するために,サポートプロトタイプのカテゴリ情報を直接活用する手法とは異なり,モデル性能を著しく向上させる2つの重要な側面を同定する。
論文 参考訳(メタデータ) (2023-08-06T18:07:45Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
数ショットのクラウドセマンティックセマンティックセグメンテーションのための新しい多層トランスフォーマーネットワークを開発した。
提案手法は,既存の数ショットの3Dポイントクラウドセグメンテーションモデルよりも15%少ない推論時間で,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-28T00:27:54Z) - Understanding Imbalanced Semantic Segmentation Through Neural Collapse [81.89121711426951]
セマンティックセグメンテーションは自然に文脈的相関とクラス間の不均衡分布をもたらすことを示す。
機能中心にレギュレータを導入し、ネットワークが魅力ある構造に近い機能を学ぶことを奨励する。
我々の手法は、ScanNet200テストリーダーボードで1位にランクインし、新しい記録を樹立する。
論文 参考訳(メタデータ) (2023-01-03T13:51:51Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - Weakly Supervised 3D Point Cloud Segmentation via Multi-Prototype
Learning [37.76664203157892]
ここでの根本的な課題は、局所幾何学構造の大きなクラス内変異であり、結果として意味クラス内のサブクラスとなる。
この直感を活用し、各サブクラスの個別分類器を維持することを選択します。
我々の仮説はまた、追加アノテーションのコストを伴わずにセマンティックサブクラスの一貫した発見を前提に検証されている。
論文 参考訳(メタデータ) (2022-05-06T11:07:36Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDescは、ロバストポイントクラウド登録のためのポイント記述子を学習するための教師なしの方法である。
学習した記述子は既存の教師なし手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-08-05T17:11:08Z) - Omni-supervised Point Cloud Segmentation via Gradual Receptive Field
Component Reasoning [41.83979510282989]
提案した RFCR (Receptive Field Component Reasoning) を通したクラウドセグメンテーションに,最初のオムニスケール監視手法を導入する。
提案手法は,S3DIS と Semantic3D に対して新たな最先端性能を実現し,ScanNet ベンチマークの1位にランクインする。
論文 参考訳(メタデータ) (2021-05-21T08:32:02Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。