論文の概要: Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
- arxiv url: http://arxiv.org/abs/2408.10562v2
- Date: Mon, 24 Mar 2025 14:22:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 16:32:16.153124
- Title: Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
- Title(参考訳): Kalib: 参照ポイントトラッキングによる手探りの簡易校正
- Authors: Tutian Tang, Minghao Liu, Wenqiang Xu, Cewu Lu,
- Abstract要約: カリブ (Kalib) は、視覚基礎モデルの一般化性を利用して課題を克服する手眼自動校正法である。
校正中は、ロボットの後ろの空間内のカメラ座標3D座標に運動基準点を追跡する。
Kalibのユーザフレンドリな設計と最小限のセットアップ要件により、非構造化環境での継続的操作のソリューションとなり得る。
- 参考スコア(独自算出の注目度): 52.4190876409222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
- Abstract(参考訳): ハンドアイキャリブレーションは、カメラとロボットの間の変換を推定することを目的としている。
伝統的な手法は、かなりの手作業と正確なセットアップを必要とするフィデューシャルマーカーに依存している。
近年のディープラーニングの進歩はマーカーレス技術を導入しているが、各ロボットのためのネットワークの再トレーニングや、データ生成のための正確なメッシュモデルへのアクセスなど、より前提条件が求められている。
本稿では,視覚基盤モデルの一般化性を活用してこれらの課題を克服する,手眼自動校正手法であるKalibを提案する。
ロボットのキネマティックチェーンと、ロボットに予め定義された参照ポイントという、2つの基本的な前提条件しか備えていない。
校正中は、基準点がカメラ空間内で追跡される。
ロボット座標における対応する3次元座標は前方運動学によって推測できる。
そして、PnPソルバは、新しいネットワークをトレーニングしたりメッシュモデルにアクセスしたりすることなく、カメラとロボット間の変換を直接推定する。
シミュレーションおよび実世界のベンチマークによる評価から、Kalibは最近のベースライン手法と比較して手作業量が少なく、精度が良いことが分かる。
また,様々なロボットアームとグリップを用いた実世界の複数の環境において,その応用を実証する。
Kalibのユーザフレンドリな設計と最小限のセットアップ要件により、非構造化環境での継続的操作のソリューションとなり得る。
関連論文リスト
- ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions [15.004750210002152]
ARC-Calibはモデルベースのマーカーレスカメラ・ロボットキャリブレーションフレームワークである。
完全に自律的で、多様なロボットにまたがって一般化できる。
論文 参考訳(メタデータ) (2025-03-18T20:03:32Z) - CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement [5.069968819561576]
CalibRefineは完全に自動化され、ターゲットレス、オンラインキャリブレーションフレームワークである。
我々は,CalibRefineが人間の関与を最小限に抑えた高精度キャリブレーション結果を提供することを示した。
本研究は、オブジェクトレベルの特徴マッチングが、反復的かつ自己監督的な注意に基づく調整と相まって、複雑で現実的な条件下でのセンサの融合を可能にすることを明らかにする。
論文 参考訳(メタデータ) (2025-02-24T20:53:42Z) - Unifying Scene Representation and Hand-Eye Calibration with 3D Foundation Models [13.58353565350936]
環境の表現はロボティクスにおける中心的な課題である。
伝統的に、ユーザーはチェッカーボードやエイプリルタグなどの特定の外部マーカーを使用してカメラを校正する必要がある。
本稿では,マニピュレータ搭載RGBカメラを搭載したロボットシステムへの3Dファウンデーション表現の統合を提唱する。
論文 参考訳(メタデータ) (2024-04-17T18:29:32Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
ロボット工学において、モーションキャプチャシステムはローカライズアルゴリズムの精度を測定するために広く利用されている。
これらの機能は、カメラとグローバルポーズセンサーの間で正確で信頼性の高い時空間キャリブレーションパラメータを必要とする。
本研究では,これらのキャリブレーションパラメータを推定する新しい2つの手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T20:56:14Z) - CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network [11.602943913324653]
CalibFormerは自動LiDARカメラキャリブレーションのためのエンドツーエンドネットワークである。
高精細度表現を実現するために、複数のカメラ層とLiDAR画像層を集約する。
平均翻訳誤差は0.8751 Mathrmcm$, 平均回転誤差は0.0562 circ$であった。
論文 参考訳(メタデータ) (2023-11-26T08:59:30Z) - Robot Hand-Eye Calibration using Structure-from-Motion [9.64487611393378]
そこで本研究では,手眼の校正のためのフレキシブルな手法を提案する。
この解は線形形式で得られることを示す。
提案手法を既存手法と比較し,その有効性を検証した実験を多数実施する。
論文 参考訳(メタデータ) (2023-11-20T14:41:44Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Automated Static Camera Calibration with Intelligent Vehicles [58.908194559319405]
自動ジオレファレンスカメラキャリブレーションのためのロバストキャリブレーション法を提案する。
本手法では, フィルタ/RTK受信機と慣性測定ユニット(IMU)を組み合わせたキャリブレーション車両が必要である。
我々の手法は、インフラと車両の両方で記録された情報と人間との相互作用を一切必要としない。
論文 参考訳(メタデータ) (2023-04-21T08:50:52Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
カメラキャリブレーションでは、キャプチャされたシーケンスから幾何学的特徴を推測するために、カメラパラメータを推定する。
近年の取り組みでは,手動キャリブレーションの繰り返し作業に代えて,学習ベースのソリューションが活用される可能性が示唆されている。
論文 参考訳(メタデータ) (2023-03-19T04:00:05Z) - Unified Data Collection for Visual-Inertial Calibration via Deep
Reinforcement Learning [24.999540933593273]
本研究では,ロボットアーム上で自動データ収集を行う動作ポリシーを学習するための新しい定式化を提案する。
本手法はモデルフリー深部強化学習を用いてキャリブレーション過程をコンパクトにモデル化する。
シミュレーションでは、手作りのポリシーよりも10倍速くキャリブレーションを実行できます。
論文 参考訳(メタデータ) (2021-09-30T10:03:56Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
本論文では,3次元変換ベクトルを学習し,提案空間内の任意のクエリ点をリザーブ空間内の対応する位置にマップする部分変換場を提案する。
パラメトリックモデルにネットワークのポーズを合わせることで、特に極端なポーズにおいて、より優れた登録品質が得られることを示す。
論文 参考訳(メタデータ) (2021-04-16T15:16:09Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。