論文の概要: Quantum Artificial Intelligence: A Brief Survey
- arxiv url: http://arxiv.org/abs/2408.10726v1
- Date: Tue, 20 Aug 2024 10:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:04:52.032656
- Title: Quantum Artificial Intelligence: A Brief Survey
- Title(参考訳): 量子人工知能:簡単な調査
- Authors: Matthias Klusch, Jörg Lässig, Daniel Müssig, Antonio Macaluso, Frank K. Wilhelm,
- Abstract要約: 量子人工知能(QAI)は、量子コンピューティングとAIの交差点である。
これまでにQAIで達成されたことを概観するとともに、今後の研究に向けたオープンな質問をいくつか紹介する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI, a technological synergy with expected significant benefits for both. In this paper, we provide a brief overview of what has been achieved in QAI so far and point to some open questions for future research. In particular, we summarize some major key findings on the feasability and the potential of using quantum computing for solving computationally hard problems in various subfields of AI, and vice versa, the leveraging of AI methods for building and operating quantum computing devices.
- Abstract(参考訳): 量子人工知能(QAI)は、量子コンピューティングとAIの交差点である。
本稿では,これまでにQAIで達成されたことの概要を概説し,今後の研究に向けたオープンな疑問を提起する。
特に、AIの様々なサブフィールドにおいて、計算的に難しい問題を解くために量子コンピューティングを使用することの可能性と実現可能性に関する主要な知見を要約し、その逆も、量子コンピューティングデバイスの構築と運用にAI手法を活用することである。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
スーパーポジションや絡み合いのような量子現象を活用する量子コンピューティングは、コンピューティング技術における変革的な力として現れつつある。
本稿では,量子力学の基礎概念と,その計算発展への意義を体系的に検討する。
論文 参考訳(メタデータ) (2024-08-25T21:40:22Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
本稿では,量子コンピュータハードウェアの最先端開発と量子暗号,量子ソフトウェア,高スケール性量子コンピュータの今後の進歩について論じる。
量子技術の研究と開発における多くの潜在的な課題とエキサイティングな新しいトレンドが、より広範な議論のためにこの論文で強調されている。
論文 参考訳(メタデータ) (2024-03-04T17:33:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
デジタルハードウェアは、最適化、ディープラーニング、微分方程式に関する問題の解決に本質的に制約されていることを示す。
対照的に、Blum-Shub-Smale マシンのようなアナログコンピューティングモデルは、これらの制限を克服する可能性を示している。
論文 参考訳(メタデータ) (2023-07-03T19:10:45Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Computing for Location Determination [6.141741864834815]
位置決定研究に量子アルゴリズムを用いた場合の期待値の例を紹介する。
提案した量子アルゴリズムは、空間と実行時間の両方において、古典的なアルゴリズムバージョンよりも指数関数的に優れた複雑性を持つ。
ソフトウェアとハードウェアの両方の研究課題と、研究者がこのエキサイティングな新しいドメインを探求する機会について論じる。
論文 参考訳(メタデータ) (2021-06-11T15:39:35Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z) - The Holy Grail of Quantum Artificial Intelligence: Major Challenges in
Accelerating the Machine Learning Pipeline [0.0]
量子コンピューティングと人工知能の相乗関係について論じる。
量子人工知能への現在のアプローチを調査した後、量子人工知能の将来に対する4つの大きな課題を導出する。
論文 参考訳(メタデータ) (2020-04-29T09:07:05Z) - Approximate Approximation on a Quantum Annealer [13.66711311825402]
産業的関心の多くの問題はNP完全であり、入力サイズが増大する計算装置の資源を急速に消費する。
QA(Quantumnealers)は、量子力学特性を利用する物理デバイスである。
論文 参考訳(メタデータ) (2020-04-20T13:15:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。