論文の概要: Lightweight Modular Parameter-Efficient Tuning for Open-Vocabulary Object Detection
- arxiv url: http://arxiv.org/abs/2408.10787v4
- Date: Thu, 25 Sep 2025 12:01:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 14:16:55.646747
- Title: Lightweight Modular Parameter-Efficient Tuning for Open-Vocabulary Object Detection
- Title(参考訳): オープンボキャブラリ物体検出のための軽量モジュールパラメータ効率チューニング
- Authors: Bilal Faye, Hanane Azzag, Mustapha Lebbah,
- Abstract要約: パラメータ効率の良いオープン語彙オブジェクト検出のための軽量なモジュラーフレームワークUniProj-Detを提案する。
UniProj-Detは事前訓練されたバックボーンを凍結し、学習可能なモダリティトークンを備えたユニバーサル・プロジェクション・モジュールを導入し、最小限のコストで視覚-言語適応を可能にする。
- 参考スコア(独自算出の注目度): 2.1155908599769764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary object detection (OVD) extends recognition beyond fixed taxonomies by aligning visual and textual features, as in MDETR, GLIP, or RegionCLIP. While effective, these models require updating all parameters of large vision--language backbones, leading to prohibitive training cost. Recent efficient OVD approaches, inspired by parameter-efficient fine-tuning methods such as LoRA or adapters, reduce trainable parameters but often face challenges in selecting which layers to adapt and in balancing efficiency with accuracy. We propose UniProj-Det, a lightweight modular framework for parameter-efficient OVD. UniProj-Det freezes pretrained backbones and introduces a Universal Projection module with a learnable modality token, enabling unified vision--language adaptation at minimal cost. Applied to MDETR, our framework trains only about ~2-5% of parameters while achieving competitive or superior performance on phrase grounding, referring expression comprehension, and segmentation. Comprehensive analysis of FLOPs, memory, latency, and ablations demonstrates UniProj-Det as a principled step toward scalable and efficient open-vocabulary detection.
- Abstract(参考訳): Open-vocabulary Object Detection (OVD) は、MDETR、GLIP、RegionalCLIPのような視覚的特徴とテキスト的特徴を整列することで、固定された分類域を超えて認識を拡張している。
有効ではあるが、これらのモデルは大きな視覚のバックボーンの全てのパラメータを更新する必要がある。
最近の効率的なOVDアプローチは、LoRAやアダプタのようなパラメータ効率のよい微調整法にインスパイアされ、トレーニング可能なパラメータを削減しているが、どの層に適応するかを選択し、効率と精度のバランスをとるかという課題に直面している。
パラメータ効率の高いOVDのための軽量なモジュラーフレームワークUniProj-Detを提案する。
UniProj-Detは事前訓練されたバックボーンを凍結し、学習可能なモダリティトークンを備えたユニバーサル・プロジェクション・モジュールを導入し、最小限のコストで視覚-言語適応を可能にする。
MDETRに適用した場合、我々のフレームワークはパラメータの約2-5%しか訓練しないが、フレーズグラウンド、表現理解、セグメンテーションの競合的あるいは優れた性能を実現している。
FLOP、メモリ、レイテンシ、アブレーションの包括的分析は、UniProj-Detをスケーラブルで効率的なオープン語彙検出への原則的なステップとして示している。
関連論文リスト
- Textual Inversion for Efficient Adaptation of Open-Vocabulary Object Detectors Without Forgetting [1.1871535995163365]
Textual Inversion (TI)は、VLM語彙を拡張して、新しいトークンを学習したり、既存のトークンを改善したりすることで、新しいオブジェクトやきめ細かいオブジェクトを、わずか3つの例から正確に検出することができる。
記憶と勾配の計算はトークンの埋め込み次元に限られており、フルモデルの微調整よりも大幅に少ない計算を必要とする。
本手法が,様々な量的,定性的実験において,忘れることに苦しむベースライン手法に適合するか否かを評価する。
論文 参考訳(メタデータ) (2025-08-07T12:28:08Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
シーン認識最適化のためのテキストメタデータを組み込むことにより、IRSTDパラダイムを再定義する新しいIRSTDフレームワークを提案する。
AuxDetは最先端の手法を一貫して上回り、堅牢性と正確性を改善する上で補助情報の重要な役割を検証している。
論文 参考訳(メタデータ) (2025-05-21T07:02:05Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - More Pictures Say More: Visual Intersection Network for Open Set Object Detection [4.206612461069489]
オープンセットオブジェクト検出(VINO)のための強力なDETRモデルであるVisual Intersection Networkを導入する。
VINOは、すべての時間ステップにまたがるカテゴリのセマンティックな交差を保存するために、マルチイメージのビジュアルバンクを構築する。
提案手法は,対象カテゴリ意味論と領域意味論のより正確な一致を保証するとともに,事前学習時間とリソース要求を著しく低減する。
論文 参考訳(メタデータ) (2024-08-26T05:52:35Z) - Visual Grounding with Attention-Driven Constraint Balancing [19.30650183073788]
本稿では,言語関連領域における視覚的特徴の挙動を最適化するために,注意駆動制約バランス(AttBalance)を提案する。
4つの異なるベンチマークで評価された5つの異なるモデルに対して、一定の改善が達成される。
QRNetにメソッドを統合することにより,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-07-03T16:14:09Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Contrastive Learning for Multi-Object Tracking with Transformers [79.61791059432558]
我々は、DETRをインスタンスレベルのコントラスト損失を用いてMOTモデルに変換する方法を示す。
本手法では,検出能力を維持しながらオブジェクトの外観を学習し,オーバーヘッドを少なく抑える。
そのパフォーマンスは、BDD100Kデータセットにおいて、以前の最先端の+2.6 mMOTAを上回っている。
論文 参考訳(メタデータ) (2023-11-14T10:07:52Z) - Semantics-Aware Dynamic Localization and Refinement for Referring Image
Segmentation [102.25240608024063]
画像の参照は、言語表現からのイメージセグメントを参照する。
そこで我々は,局所化中心からセグメンテーション言語へ移行するアルゴリズムを開発した。
比較すると,本手法はより汎用的で有効である。
論文 参考訳(メタデータ) (2023-03-11T08:42:40Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
既存の手法では、人間の理解可能な意味論によって支配されるトップダウンの監視信号が欠落していると論じる。
マルチスケール特徴処理と変形可能な自己アテンションを用いた効率よく柔軟なMViTアーキテクチャを開発した。
多様なアプリケーションにおけるMViT提案の重要性を示す。
論文 参考訳(メタデータ) (2021-11-22T18:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。