論文の概要: DBHP: Trajectory Imputation in Multi-Agent Sports Using Derivative-Based Hybrid Prediction
- arxiv url: http://arxiv.org/abs/2408.10878v2
- Date: Fri, 23 Aug 2024 01:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 17:10:58.736538
- Title: DBHP: Trajectory Imputation in Multi-Agent Sports Using Derivative-Based Hybrid Prediction
- Title(参考訳): DBHP:派生型ハイブリッド予測を用いた多エージェントスポーツにおける軌道インパテーション
- Authors: Hanjun Choi, Hyunsung Kim, Minho Lee, Chang-Jo Kim, Jinsung Yoon, Sang-Ki Ko,
- Abstract要約: 本稿では,複数のエージェントの欠落した軌跡を効果的に説明できるDBHP(デリバティブベースハイブリッド予測)フレームワークを提案する。
我々のフレームワークは既存の計算基準を著しく上回っている。
- 参考スコア(独自算出の注目度): 17.634603536233975
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many spatiotemporal domains handle multi-agent trajectory data, but in real-world scenarios, collected trajectory data are often partially missing due to various reasons. While existing approaches demonstrate good performance in trajectory imputation, they face challenges in capturing the complex dynamics and interactions between agents due to a lack of physical constraints that govern realistic trajectories, leading to suboptimal results. To address this issue, the paper proposes a Derivative-Based Hybrid Prediction (DBHP) framework that can effectively impute multiple agents' missing trajectories. First, a neural network equipped with Set Transformers produces a naive prediction of missing trajectories while satisfying the permutation-equivariance in terms of the order of input agents. Then, the framework makes alternative predictions leveraging velocity and acceleration information and combines all the predictions with properly determined weights to provide final imputed trajectories. In this way, our proposed framework not only accurately predicts position, velocity, and acceleration values but also enforces the physical relationship between them, eventually improving both the accuracy and naturalness of the predicted trajectories. Accordingly, the experiment results about imputing player trajectories in team sports show that our framework significantly outperforms existing imputation baselines.
- Abstract(参考訳): 多くの時空間領域はマルチエージェント軌道データを扱うが、現実のシナリオでは、収集された軌道データは様々な理由により部分的に欠落することが多い。
既存の手法は軌道計算において優れた性能を示すが、現実的な軌道を統治する物理的制約の欠如によりエージェント間の複雑な力学や相互作用を捉えることの難しさに直面する。
この問題に対処するために,複数エージェントの欠落した軌跡を効果的に説明できるDBHPフレームワークを提案する。
第一に、Set Transformersを備えたニューラルネットワークは、入力エージェントの順序の順で置換等価性を満足しつつ、損失軌跡の単純予測を生成する。
そして、このフレームワークは速度と加速度情報を利用した代替予測を行い、全ての予測と適切に決定された重みを組み合わせ、最終的なインプット軌道を提供する。
このようにして、提案するフレームワークは位置、速度、加速度の値を正確に予測するだけでなく、それらの物理的関係を強制し、最終的に予測された軌道の精度と自然性の両方を改善する。
そこで,チームスポーツにおける打楽器の軌跡に関する実験結果から,我々の枠組みは既存の打楽器のベースラインを大きく上回っていることがわかった。
関連論文リスト
- Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
軌道予測は、交通参加者の将来の動きを予測することを目的として、自動運転に不可欠である。
伝統的な方法は通常、エージェントの軌道に関する全体論的推論を行い、エージェント間の難易度の違いを無視する。
本稿では,エージェント間の予測難易度差を利用した,DGFNet(DifficultyGuided Feature Enhancement)を提案する。
論文 参考訳(メタデータ) (2024-07-26T07:04:30Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
道路交差点において,信号機や信号機を使わずに複数の非通信的合理的エージェント間の分散ナビゲーションに着目した。
我々の重要な洞察は、交差点の幾何学的構造と、効率的に動くエージェントのインセンティブが衝突を避け(合理性)、起こりうる行動の空間を減少させるということである。
マルチエージェント交差点シーンにおける高次モードの軌道表現を再構成するデータ駆動型軌道予測機構であるMTPを設計する。
論文 参考訳(メタデータ) (2020-11-08T02:56:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。