Conformalized Interval Arithmetic with Symmetric Calibration
- URL: http://arxiv.org/abs/2408.10939v1
- Date: Tue, 20 Aug 2024 15:27:18 GMT
- Title: Conformalized Interval Arithmetic with Symmetric Calibration
- Authors: Rui Luo, Zhixin Zhou,
- Abstract summary: We develop conformal prediction intervals for single target to the prediction interval for sum of multiple targets.
We show that our method outperforms existing conformalized approaches as well as non-conformal approaches.
- Score: 9.559062601251464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification is essential in decision-making, especially when joint distributions of random variables are involved. While conformal prediction provides distribution-free prediction sets with valid coverage guarantees, it traditionally focuses on single predictions. This paper introduces novel conformal prediction methods for estimating the sum or average of unknown labels over specific index sets. We develop conformal prediction intervals for single target to the prediction interval for sum of multiple targets. Under permutation invariant assumptions, we prove the validity of our proposed method. We also apply our algorithms on class average estimation and path cost prediction tasks, and we show that our method outperforms existing conformalized approaches as well as non-conformal approaches.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Invariant Probabilistic Prediction [45.90606906307022]
We show that arbitrary distribution shifts do not, in general, admit invariant and robust probabilistic predictions.
We propose a method to yield invariant probabilistic predictions, called IPP, and study the consistency of the underlying parameters.
arXiv Detail & Related papers (2023-09-18T18:50:24Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
Conformal prediction and split conformal prediction offer a distribution-free approach to estimating prediction intervals with statistical guarantees.
Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage.
This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction.
arXiv Detail & Related papers (2023-09-15T11:10:46Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
An important issue when using Machine Learning algorithms in recent research is the lack of interpretability.
A contribution to this gap for the Random Forest Regression Learner is presented here.
Several parametric and non-parametric prediction intervals are provided for Random Forest point predictions.
A thorough investigation through Monte-Carlo simulation is conducted evaluating the performance of the proposed methods.
arXiv Detail & Related papers (2021-03-09T23:05:55Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.