論文の概要: Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
- arxiv url: http://arxiv.org/abs/2408.10976v1
- Date: Tue, 20 Aug 2024 16:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:55:01.421193
- Title: Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
- Title(参考訳): 非パラメトリック非巡回グラフモデルのカーネルベース微分可能学習
- Authors: Yurou Liang, Oleksandr Zadorozhnyi, Mathias Drton,
- Abstract要約: 因果発見は因果モデルを符号化する有向非巡回グラフ (DAG) を学ぶことに相当する。
近年の研究では、因果発見を連続最適化問題として再検討し、探索を回避しようとしている。
- 参考スコア(独自算出の注目度): 17.52142371968811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. This model selection problem can be challenging due to its large combinatorial search space, particularly when dealing with non-parametric causal models. Recent research has sought to bypass the combinatorial search by reformulating causal discovery as a continuous optimization problem, employing constraints that ensure the acyclicity of the graph. In non-parametric settings, existing approaches typically rely on finite-dimensional approximations of the relationships between nodes, resulting in a score-based continuous optimization problem with a smooth acyclicity constraint. In this work, we develop an alternative approximation method by utilizing reproducing kernel Hilbert spaces (RKHS) and applying general sparsity-inducing regularization terms based on partial derivatives. Within this framework, we introduce an extended RKHS representer theorem. To enforce acyclicity, we advocate the log-determinant formulation of the acyclicity constraint and show its stability. Finally, we assess the performance of our proposed RKHS-DAGMA procedure through simulations and illustrative data analyses.
- Abstract(参考訳): 因果発見は因果モデルを符号化する有向非巡回グラフ (DAG) を学ぶことに相当する。
このモデル選択問題は、特に非パラメトリック因果モデルを扱う場合、その大きな組合せ探索空間のために困難である。
近年の研究では、因果探索を連続的な最適化問題として修正し、グラフの非巡回性を保証する制約を用いることで、組合せ探索を回避しようとしている。
非パラメトリックな設定では、既存のアプローチは一般にノード間の関係の有限次元近似に依存し、滑らかな非循環性制約を持つスコアベースの連続最適化問題をもたらす。
本研究では、再生カーネルヒルベルト空間(RKHS)を活用し、偏微分に基づく一般空間性誘導正規化項を適用することで、代替近似法を開発する。
本枠組みでは,拡張されたRKHS代表者定理を導入する。
非サイクリック性を強制するために、非サイクリック性制約の対数決定的定式化を提唱し、その安定性を示す。
最後に,RKHS-DAGMA法の性能評価を行った。
関連論文リスト
- Non-negative Weighted DAG Structure Learning [12.139158398361868]
本研究は,真DAGを夜間観測から学習する問題に対処する。
本稿では, ar を返すことが保証される手法に基づく DAG 回復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-12T09:41:29Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
関数因果モデルに基づく手法は、ユニークなグラフを識別することができるが、次元性の呪いや強いパラメトリックな仮定を課すことに苦しむ。
本研究では,局所的な因果構造を利用した観測データにおけるグローバル因果発見のための新しいハイブリッド手法を提案する。
我々は, 合成データに対する実証的な検証を行い, 正確性および最悪の場合の時間複雑度を理論的に保証する。
論文 参考訳(メタデータ) (2024-05-23T12:28:16Z) - CoLiDE: Concomitant Linear DAG Estimation [12.415463205960156]
観測データから線形方程式への非巡回グラフ構造学習の問題に対処する。
本稿では,空間認識学習DAGのための新しい凸スコア関数を提案する。
論文 参考訳(メタデータ) (2023-10-04T15:32:27Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Sequential Learning of the Topological Ordering for the Linear
Non-Gaussian Acyclic Model with Parametric Noise [6.866717993664787]
我々はDAGの因果順序を推定するための新しい逐次的アプローチを開発する。
数千のノードを持つケースに対して,我々の手順がスケーラブルであることを示すための,広範な数値的証拠を提供する。
論文 参考訳(メタデータ) (2022-02-03T18:15:48Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Efficient Neural Causal Discovery without Acyclicity Constraints [30.08586535981525]
本研究では,有向非巡回因果グラフの効率的な構造学習法であるENCOを提案する。
実験の結果,ENCOは数百ノードのグラフを効率よく回収できることがわかった。
論文 参考訳(メタデータ) (2021-07-22T07:01:41Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。