StructuredRAG: JSON Response Formatting with Large Language Models
- URL: http://arxiv.org/abs/2408.11061v1
- Date: Wed, 7 Aug 2024 19:32:59 GMT
- Title: StructuredRAG: JSON Response Formatting with Large Language Models
- Authors: Connor Shorten, Charles Pierse, Thomas Benjamin Smith, Erika Cardenas, Akanksha Sharma, John Trengrove, Bob van Luijt,
- Abstract summary: We introduce StructuredRAG, a benchmark of six tasks designed to assess Large Language Models' proficiency in following response format instructions.
We evaluate two state-of-the-art LLMs, Gemini 1.5 Pro and Llama 3 8B-instruct with 4-bit quantization.
We find that Llama 3 8B-instruct often performs competitively with Gemini 1.5 Pro.
- Score: 0.3141085922386211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of Large Language Models (LLMs) to generate structured outputs, such as JSON, is crucial for their use in Compound AI Systems. However, evaluating and improving this capability remains challenging. In this work, we introduce StructuredRAG, a benchmark of six tasks designed to assess LLMs' proficiency in following response format instructions. We evaluate two state-of-the-art LLMs, Gemini 1.5 Pro and Llama 3 8B-instruct with 4-bit quantization using two distinct prompting strategies. We introduce these prompting strategies as f-String and Follow the Format (FF) prompting. Across 24 experiments, we find an average success rate of 82.55%. We further find a high variance in performance across tasks, models, and prompting strategies with success rates ranging from 0 to 100%. We find that Llama 3 8B-instruct often performs competitively with Gemini 1.5 Pro. We observe that task complexity significantly influences performance, with tasks involving lists or composite object outputs proving more challenging. Our findings highlight the need for further research into improving the reliability and consistency of structured output generation in LLMs. We have open-sourced our experimental code and results at github.com/weaviate/structured-rag.
Related papers
- StrucText-Eval: Evaluating Large Language Model's Reasoning Ability in Structure-Rich Text [29.03935605732864]
We introduce StrucText-Eval, a benchmark to evaluate how well large language models understand and reason through structured text.
We show that while open-source LLMs achieve a maximum accuracy of 74.9% on the standard dataset, their performance drops significantly to 45.8% on the harder dataset.
In contrast, human participants reach an accuracy of 92.6% on StrucText-Eval-Hard, highlighting LLMs' current limitations in handling intricate structural information.
arXiv Detail & Related papers (2024-06-15T12:48:00Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
Performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts.
We introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries.
Experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance.
arXiv Detail & Related papers (2024-06-08T13:40:38Z) - From Tarzan to Tolkien: Controlling the Language Proficiency Level of LLMs for Content Generation [10.009516150364371]
We evaluate the effectiveness of several key approaches for this task, including few-shot prompting, supervised finetuning, and reinforcement learning.
Our findings reveal a large performance gap between GPT-4 and the open source models when using prompt-based strategies.
Our best model, CALM (CEFR-Aligned Language Model), surpasses the performance of GPT-4 and other strategies, at only a fraction of the cost.
arXiv Detail & Related papers (2024-06-05T07:57:17Z) - Self-Discover: Large Language Models Self-Compose Reasoning Structures [136.48389510481758]
We introduce SELF-DISCOVER, a framework for self-discovering task-intrinsic reasoning structures.
SELF-DISCOVER substantially improves GPT-4 and PaLM 2's performance on challenging reasoning benchmarks.
We show that the self-discovered reasoning structures are universally applicable across model families.
arXiv Detail & Related papers (2024-02-06T01:13:53Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - What Makes for Good Visual Instructions? Synthesizing Complex Visual
Reasoning Instructions for Visual Instruction Tuning [115.19451843294154]
Visual instruction tuning is an essential approach to improving the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs)
We propose a systematic approach to automatically creating high-quality complex visual reasoning instructions.
Our dataset consistently enhances the performance of all the compared MLLMs, e.g., improving the performance of MiniGPT-4 and BLIP-2 on MME-Cognition by 32.6% and 28.8%, respectively.
arXiv Detail & Related papers (2023-11-02T15:36:12Z) - Compresso: Structured Pruning with Collaborative Prompting Learns
Compact Large Language Models [15.471290825100075]
We introduce a new paradigm for structurally pruning Large Language Models, called Compresso.
Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process.
In experiments, Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.
arXiv Detail & Related papers (2023-10-08T05:16:28Z) - Benchmarking the Abilities of Large Language Models for RDF Knowledge
Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? [0.0]
Large Language Models (LLMs) are advancing at a rapid pace, with significant improvements at natural language processing and coding tasks.
To evaluate the proficiency of various LLMs, we created a set of five tasks that probe their ability to parse, understand, analyze, and create knowledge graphs serialized in Turtle syntax.
The evaluation encompassed four commercially available LLMs - GPT-3.5, GPT-4, Claude 1.3, and Claude 2.0, as well as two freely accessible offline models, GPT4All Vicuna and GPT4All Falcon 13B.
arXiv Detail & Related papers (2023-09-29T10:36:04Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Bench is a comprehensive benchmark featuring prominent Large Language Models (LLMs)
We propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score)
Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains.
arXiv Detail & Related papers (2023-09-16T11:31:58Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.