論文の概要: Tabular Transfer Learning via Prompting LLMs
- arxiv url: http://arxiv.org/abs/2408.11063v1
- Date: Fri, 9 Aug 2024 11:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:11:11.630449
- Title: Tabular Transfer Learning via Prompting LLMs
- Title(参考訳): プロンプティング LLM を用いたタブラルトランスファー学習
- Authors: Jaehyun Nam, Woomin Song, Seong Hyeon Park, Jihoon Tack, Sukmin Yun, Jaehyung Kim, Kyu Hwan Oh, Jinwoo Shin,
- Abstract要約: 大規模言語モデル(LLM)を用いたラベル付き(あるいは異種)ソースデータを利用した新しいフレームワークPrompt to Transfer (P2T)を提案する。
P2Tは、ターゲットタスク機能と強く相関しているソースデータセットの列の特徴を特定し、ターゲットタスクに関連する例を作成し、プロンプトの擬似宣言を生成する。
- 参考スコア(独自算出の注目度): 52.96022335067357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning with a limited number of labeled data is a central problem in real-world applications of machine learning, as it is often expensive to obtain annotations. To deal with the scarcity of labeled data, transfer learning is a conventional approach; it suggests to learn a transferable knowledge by training a neural network from multiple other sources. In this paper, we investigate transfer learning of tabular tasks, which has been less studied and successful in the literature, compared to other domains, e.g., vision and language. This is because tables are inherently heterogeneous, i.e., they contain different columns and feature spaces, making transfer learning difficult. On the other hand, recent advances in natural language processing suggest that the label scarcity issue can be mitigated by utilizing in-context learning capability of large language models (LLMs). Inspired by this and the fact that LLMs can also process tables within a unified language space, we ask whether LLMs can be effective for tabular transfer learning, in particular, under the scenarios where the source and target datasets are of different format. As a positive answer, we propose a novel tabular transfer learning framework, coined Prompt to Transfer (P2T), that utilizes unlabeled (or heterogeneous) source data with LLMs. Specifically, P2T identifies a column feature in a source dataset that is strongly correlated with a target task feature to create examples relevant to the target task, thus creating pseudo-demonstrations for prompts. Experimental results demonstrate that P2T outperforms previous methods on various tabular learning benchmarks, showing good promise for the important, yet underexplored tabular transfer learning problem. Code is available at https://github.com/jaehyun513/P2T.
- Abstract(参考訳): ラベル付きデータの限られた数での学習は、アノテーションを得るのにしばしばコストがかかるため、機械学習の現実的な応用における中心的な問題である。
ラベル付きデータの不足に対処するため、転送学習は従来のアプローチであり、他の複数のソースからニューラルネットワークをトレーニングすることで、転送可能な知識を学ぶことを提案している。
本稿では,他の領域,例えば視覚や言語と比較して,文学においてあまり研究され成功していない表型タスクの伝達学習について検討する。
これはテーブルが本質的に不均一であるため、すなわち、異なる列や特徴空間を含むため、転送学習が困難になるためである。
一方,近年の自然言語処理の進歩は,大規模言語モデル(LLM)の文脈内学習機能を利用することで,ラベル不足を軽減できることを示唆している。
このことや、LLMが統一言語空間内でテーブルを処理できるという事実に着想を得て、特に、ソースとターゲットのデータセットが異なるフォーマットのシナリオにおいて、LLMが表型変換学習に有効かどうかを問う。
肯定的な回答として,ラベル付き(あるいは異種)ソースデータとLLMを併用した新しい表型変換学習フレームワークであるPrompt to Transfer (P2T)を提案する。
具体的には、P2Tは、ターゲットタスクの特徴と強く相関しているソースデータセットの列の特徴を特定し、ターゲットタスクに関連する例を作成し、プロンプトの擬似宣言を生成する。
実験の結果、P2Tは様々な表型学習ベンチマークにおいて従来の手法よりも優れており、重要で未探索の表型移動学習問題に良い期待が持てることが示された。
コードはhttps://github.com/jaehyun513/P2Tで入手できる。
関連論文リスト
- On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
大規模言語モデル(LLM)は、テキスト形式学習問題において顕著な成功を収めた。
LLMは、熟練した人間のアノテータよりも品質の高いデータセットをラベル付けすることができる。
本稿では,ブラックボックス LLM を用いた分類のための教師なしのプロンプト学習を提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - AnnotatedTables: A Large Tabular Dataset with Language Model Annotations [8.602181445598776]
本稿では,多種多様な表データのアノテーションを機械学習で自動生成する方法を示す。
LLM生成アノテーションを備えた32,119のデータベースのコレクションであるAnnotatedTablesをリリースしました。
LLMによって同定された入力ターゲット列を持つ2,720のテーブル上で,ベイジアン事前訓練を行った最近のニューラルネットワーク分類器であるTabPFNの性能評価を行った。
論文 参考訳(メタデータ) (2024-06-24T06:44:14Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
大規模言語モデル(LLM)は様々なタスクで優れていますが、高リソースのシナリオではより良く機能しています。
データ不足と特定のタスクにLLMを適用することの難しさは、この課題を複雑にしている。
本稿では,Token-Efficient Leverage Learning (TELL) と呼ばれる方法論の合理化実装を提案する。
論文 参考訳(メタデータ) (2024-04-01T04:39:44Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
本稿では, 条件分布モデリングの統計的テストや, 暗記を識別する4つのテストなど, 汚染度を評価するための様々な手法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T12:07:13Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
メソッドの1つのブランチは、視覚情報を使用してプロンプトを学習することでCLIPに適応する。
別のアプローチでは、大規模な言語モデルからクラス記述を生成することで、トレーニング不要の手法を利用する。
そこで本研究では,テキストデータのみを用いてプロンプトを学習することで,両ストリームの強みを組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-01-04T18:59:49Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
我々は、トランスファーラーニング、メタラーニング、コントラストラーニングを、参照機械学習(ML)ツリーベースおよびモノリシックDLモデルと比較する。
i) 大規模なデータセットを用いて,より一般的な表現を得られること,(ii) コントラスト学習が最良の手法であることを示している。
MLツリーベースでは大きなタスクは処理できないが、学習した表現を再利用することで、小さなタスクにも適合するが、DLメソッドはツリーベースモデルのパフォーマンスにも到達している。
論文 参考訳(メタデータ) (2023-05-21T11:20:49Z) - Distinguishability Calibration to In-Context Learning [31.375797763897104]
そこで本研究では, PLM符号化埋め込みを新しい距離空間にマッピングすることで, 埋め込みの識別性を保証する手法を提案する。
また、双曲的埋め込みの利点を生かして、粒度の細かいクラス関連トークン埋め込み間の階層的関係を捉える。
論文 参考訳(メタデータ) (2023-02-13T09:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。