Taming Generative Diffusion for Universal Blind Image Restoration
- URL: http://arxiv.org/abs/2408.11287v1
- Date: Wed, 21 Aug 2024 02:19:54 GMT
- Title: Taming Generative Diffusion for Universal Blind Image Restoration
- Authors: Siwei Tu, Weidong Yang, Ben Fei,
- Abstract summary: BIR-D is able to fulfill multi-guidance blind image restoration.
It can also restore images that undergo multiple and complicated degradations, demonstrating the practical applications.
- Score: 4.106012295148947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have been widely utilized for image restoration. However, previous blind image restoration methods still need to assume the type of degradation model while leaving the parameters to be optimized, limiting their real-world applications. Therefore, we aim to tame generative diffusion prior for universal blind image restoration dubbed BIR-D, which utilizes an optimizable convolutional kernel to simulate the degradation model and dynamically update the parameters of the kernel in the diffusion steps, enabling it to achieve blind image restoration results even in various complex situations. Besides, based on mathematical reasoning, we have provided an empirical formula for the chosen of adaptive guidance scale, eliminating the need for a grid search for the optimal parameter. Experimentally, Our BIR-D has demonstrated superior practicality and versatility than off-the-shelf unsupervised methods across various tasks both on real-world and synthetic datasets, qualitatively and quantitatively. BIR-D is able to fulfill multi-guidance blind image restoration. Moreover, BIR-D can also restore images that undergo multiple and complicated degradations, demonstrating the practical applications.
Related papers
- Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
We introduce an alternative solution to improve the generalization of image restoration models.
We propose AdaptIR, a Mixture-of-Experts (MoE) with multi-branch design to capture local, global, and channel representation bases.
Our AdaptIR achieves stable performance on single-degradation tasks, and excels in hybrid-degradation tasks, with fine-tuning only 0.6% parameters for 8 hours.
arXiv Detail & Related papers (2023-12-12T14:27:59Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration [5.573836220587265]
This work proposes an efficient Dynamic Reference Modeling paradigm (DRM-IR)
DRM-IR consists of task-adaptive degradation modeling and model-based image restoring.
Experiments on multiple benchmark datasets show that our DRM-IR achieves state-of-the-art in All-In-One IR.
arXiv Detail & Related papers (2023-07-15T02:42:19Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Generative Diffusion Prior for Unified Image Restoration and Enhancement [62.76390152617949]
Existing image restoration methods mostly leverage the posterior distribution of natural images.
We propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner.
GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems.
arXiv Detail & Related papers (2023-04-03T16:52:43Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.