論文の概要: Linear-time One-Class Classification with Repeated Element-wise Folding
- arxiv url: http://arxiv.org/abs/2408.11412v1
- Date: Wed, 21 Aug 2024 08:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:59:43.081875
- Title: Linear-time One-Class Classification with Repeated Element-wise Folding
- Title(参考訳): 繰り返し要素分割による一級線形時間分類
- Authors: Jenni Raitoharju,
- Abstract要約: 本稿では,一級分類における使い易い方法として,繰り返し要素分割法(REF)を提案する。
REFは、一般的に使用されるより要求の多いアプローチの線形時間代替を提供する。
実験の結果、REFは類似の分類性能、あるいは様々なベンチマークデータセットでより複雑なアルゴリズムよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 6.116088814650622
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes an easy-to-use method for one-class classification: Repeated Element-wise Folding (REF). The algorithm consists of repeatedly standardizing and applying an element-wise folding operation on the one-class training data. Equivalent mappings are performed on unknown test items and the classification prediction is based on the item's distance to the origin of the final distribution. As all the included operations have linear time complexity, the proposed algorithm provides a linear-time alternative for the commonly used computationally much more demanding approaches. Furthermore, REF can avoid the challenges of hyperparameter setting in one-class classification by providing robust default settings. The experiments show that the proposed method can produce similar classification performance or even outperform the more complex algorithms on various benchmark datasets. Matlab codes for REF are publicly available at https://github.com/JenniRaitoharju/REF.
- Abstract(参考訳): 本稿では,一級分類の繰り返し要素分割法(REF)を提案する。
このアルゴリズムは、一級訓練データに対して要素回りの折り畳み操作を繰り返し標準化し適用する。
未知のテスト項目に対して等価なマッピングを行い、最終分布の起点までの項目の距離に基づいて分類予測を行う。
すべての操作が線形時間的複雑性を持つので、提案アルゴリズムは、一般的に使用されるより要求の多いアプローチに対する線形時間的代替手段を提供する。
さらに、REFは、堅牢なデフォルト設定を提供することで、一クラスの分類におけるハイパーパラメータ設定の課題を回避することができる。
実験により,提案手法は類似した分類性能を得られるか,あるいは様々なベンチマークデータセット上でより複雑なアルゴリズムよりも優れていることが示された。
REFのMatlabコードはhttps://github.com/JenniRaitoharju/REFで公開されている。
関連論文リスト
- A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
本稿では,従来の知識として,新しいクラスとベースクラスのカテゴリ相関を探索し,シンプルで効果的な特徴補正手法を提案する。
提案手法は, 広く使用されている3つのベンチマークにおいて, 一定の性能向上が得られる。
論文 参考訳(メタデータ) (2021-12-14T08:25:24Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Probability-driven scoring functions in combining linear classifiers [0.913755431537592]
本研究の目的は,線形分類器のアンサンブルに特化した新しい融合法を構築することである。
提案手法は,KEELレポジトリから抽出した複数のベンチマークデータセットを用いて参照手法と比較する。
実験により、ある条件下では、いくつかの改善が得られ得ることが示された。
論文 参考訳(メタデータ) (2021-09-16T08:58:32Z) - A concise method for feature selection via normalized frequencies [0.0]
本稿では,普遍的特徴選択のための簡潔な手法を提案する。
提案手法は, フィルタ法とラッパー法を融合して行う。
評価結果から,提案手法は,精度,精度,リコール,Fスコア,AUCの点で,いくつかの最先端技術に優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-10T15:29:54Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
本稿では,クラス増分学習のための新しい戦略を提案する。
本提案は,p(x|y)p(y) として分解された合同分布 p(x,y) を学習し,ベイズ則を用いた分類を行うことである。
ここでは,各学習クラスに対して,変分オートエンコーダをトレーニングすることで,この戦略を実証する。
論文 参考訳(メタデータ) (2021-04-20T16:26:14Z) - SetConv: A New Approach for Learning from Imbalanced Data [29.366843553056594]
集合畳み込み操作とエピソード学習戦略を提案し,各クラスに1つの代表を抽出する。
提案アルゴリズムは入力順序に関わらず置換不変であることを示す。
論文 参考訳(メタデータ) (2021-04-03T22:33:30Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。