論文の概要: LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems
- arxiv url: http://arxiv.org/abs/2408.11440v1
- Date: Wed, 21 Aug 2024 08:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:49:48.114418
- Title: LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems
- Title(参考訳): LAHAJA:Hindi ASRシステム評価のためのロバストなマルチアクセントベンチマーク
- Authors: Tahir Javed, Janki Nawale, Sakshi Joshi, Eldho George, Kaushal Bhogale, Deovrat Mehendale, Mitesh M. Khapra,
- Abstract要約: LAHAJAというベンチマークを作成し、様々なトピックやユースケースに関する読み書き音声を含む。
LAHAJAの既存のオープンソースおよび商用モデルを評価し,その性能が劣っていることを確認した。
異なるデータセットを使用してモデルをトレーニングし、優れた話者多様性を持つ多言語データに基づいてトレーニングしたモデルが、既存のモデルよりもかなりのマージンで優れていることを確認する。
- 参考スコア(独自算出の注目度): 16.143694951047024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hindi, one of the most spoken language of India, exhibits a diverse array of accents due to its usage among individuals from diverse linguistic origins. To enable a robust evaluation of Hindi ASR systems on multiple accents, we create a benchmark, LAHAJA, which contains read and extempore speech on a diverse set of topics and use cases, with a total of 12.5 hours of Hindi audio, sourced from 132 speakers spanning 83 districts of India. We evaluate existing open-source and commercial models on LAHAJA and find their performance to be poor. We then train models using different datasets and find that our model trained on multilingual data with good speaker diversity outperforms existing models by a significant margin. We also present a fine-grained analysis which shows that the performance declines for speakers from North-East and South India, especially with content heavy in named entities and specialized terminology.
- Abstract(参考訳): ヒンディー語(ヒンディー語:Hindi)は、インドで最も話されている言語の一つである。
複数のアクセントでヒンディー語ASRシステムのロバストな評価を可能にするため,インドの83地区にまたがる132人の話者から得られたヒンディー語音声の合計12.5時間を用いて,多様なトピックやユースケースの読み書き音声を含むベンチマークLAHAJAを作成した。
LAHAJAの既存のオープンソースおよび商用モデルを評価し,その性能が劣っていることを確認した。
次に、異なるデータセットを使用してモデルをトレーニングし、優れた話者多様性を持つ多言語データに基づいてトレーニングされたモデルが、既存のモデルよりも大幅にパフォーマンスを向上していることに気付きます。
また,北東アジアと南インドにおける話者のパフォーマンス低下,特に名前付きエンティティや専門用語に重きを置きながら,詳細な分析を行った。
関連論文リスト
- Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - Voices Unheard: NLP Resources and Models for Yorùbá Regional Dialects [72.18753241750964]
Yorub'aは、約4700万人の話者を持つアフリカの言語である。
アフリカ語のためのNLP技術開発への最近の取り組みは、彼らの標準方言に焦点を当てている。
我々は、このギャップを埋めるために、新しい高品質のパラレルテキストと音声コーパスを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:38:04Z) - Predicting positive transfer for improved low-resource speech
recognition using acoustic pseudo-tokens [31.83988006684616]
我々は、ターゲット言語を、類似の高リソースの「ドナー」言語からのデータで補うことが役立つことを示す。
例えば、60時間ドナーのヒンディーが補充された低リソースのパンジャービの10時間のみの事前訓練は、70時間ドナーのパンジャービの70時間ドナーのほぼ同程度である。
論文 参考訳(メタデータ) (2024-02-03T23:54:03Z) - A Deep Dive into the Disparity of Word Error Rates Across Thousands of
NPTEL MOOC Videos [4.809236881780707]
英語のSsim9.8$Kの技術講義とインド・デモグラフィーの様々な部分を表すインストラクターによる書き起こしからなる8740時間の大規模音声データセットのキュレーションについて述べる。
私たちは、キュレートされたデータセットを使用して、インドの多様な話者の人口統計学的特徴にまたがる、YouTube Automatic CaptionsとOpenAI Whisperモデルのパフォーマンスの既存の格差を測定します。
論文 参考訳(メタデータ) (2023-07-20T05:03:00Z) - Svarah: Evaluating English ASR Systems on Indian Accents [12.197514367387692]
Svarahは、インド全65カ所の117人の話者から9.6時間の英語音声が書き起こされたベンチマークです。
スバラ語は、読み上げ音声と自発的会話データの両方を含み、歴史、文化、観光など様々な領域をカバーし、多様な語彙を保証する。
我々は,Svarah上での6つのオープンソースASRモデルと2つの商用ASRシステムを評価し,インドアクセントを改善するための明確な範囲があることを示した。
論文 参考訳(メタデータ) (2023-05-25T06:20:29Z) - Vistaar: Diverse Benchmarks and Training Sets for Indian Language ASR [14.15737970309719]
IndicWhisperはVistaarベンチマークで考慮されたASRシステムを大幅に改善することを示す。
IndicWhisperは59ベンチマーク中39ベンチマークで最低のWERを持ち、平均で4.1 WERである。
すべてのデータセット、コード、モデルをオープンソースにしています。
論文 参考訳(メタデータ) (2023-05-24T17:46:03Z) - Towards Building ASR Systems for the Next Billion Users [15.867823754118422]
インド亜大陸からの低資源言語のためのASRシステム構築に貢献する。
まず、40言語を対象に、17,000時間の生音声データをキュレートする。
この生の音声データを用いて、40のインドの言語に対して、いくつかのwav2vecスタイルモデルを事前訓練する。
論文 参考訳(メタデータ) (2021-11-06T19:34:33Z) - Phoneme Recognition through Fine Tuning of Phonetic Representations: a
Case Study on Luhya Language Varieties [77.2347265289855]
音韻アノテーションに基づく多言語認識手法であるAllosaurus を用いた音素認識に焦点を当てた。
挑戦的な実世界シナリオで評価するために,我々は,ケニア西部とウガンダ東部のluhya言語クラスタの2つの種類であるbukusuとsaamiaの音声認識データセットをキュレートした。
私たちは、アロサウルスの微調整がわずか100発話であっても、電話のエラー率を大幅に改善することが分かりました。
論文 参考訳(メタデータ) (2021-04-04T15:07:55Z) - Multilingual and code-switching ASR challenges for low resource Indian
languages [59.2906853285309]
インドの7つの言語に関連する2つのサブタスクを通じて、多言語およびコードスイッチングASRシステムの構築に重点を置いている。
これらの言語では、列車とテストセットからなる600時間分の音声データを合計で提供します。
また,マルチリンガルサブタスクとコードスイッチサブタスクのテストセットでは,それぞれ30.73%と32.45%という,タスクのベースラインレシピも提供しています。
論文 参考訳(メタデータ) (2021-04-01T03:37:01Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
我々は、他言語に存在するリソースを用いて、多言語自動音声認識モデルを訓練する。
我々は,多言語設定における全言語間での大幅な改善と,多言語設定におけるスターク劣化を観察した。
分析の結果、ひとつの言語に固有の電話でさえ、他の言語からのトレーニングデータを追加することで大きなメリットがあることがわかった。
論文 参考訳(メタデータ) (2020-05-16T22:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。