論文の概要: Research on the Application of Large Language Models in Automatic Question Generation: A Case Study of ChatGLM in the Context of High School Information Technology Curriculum
- arxiv url: http://arxiv.org/abs/2408.11539v1
- Date: Wed, 21 Aug 2024 11:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:17:15.222462
- Title: Research on the Application of Large Language Models in Automatic Question Generation: A Case Study of ChatGLM in the Context of High School Information Technology Curriculum
- Title(参考訳): 質問自動生成における大規模言語モデルの応用に関する研究:高校情報技術カリキュラムにおけるChatGLMを事例として
- Authors: Yanxin Chen, Ling He,
- Abstract要約: モデルは多様な質問を生成するためにガイドされ、ドメインの専門家によって包括的に評価される。
以上の結果から,ChatGLMは人為的な質問に対して,明快さと教師の利用意欲で優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 3.0753648264454547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the application effectiveness of the Large Language Model (LLMs) ChatGLM in the automated generation of high school information technology exam questions. Through meticulously designed prompt engineering strategies, the model is guided to generate diverse questions, which are then comprehensively evaluated by domain experts. The evaluation dimensions include the Hitting(the degree of alignment with teaching content), Fitting (the degree of embodiment of core competencies), Clarity (the explicitness of question descriptions), and Willing to use (the teacher's willingness to use the question in teaching). The results indicate that ChatGLM outperforms human-generated questions in terms of clarity and teachers' willingness to use, although there is no significant difference in hit rate and fit. This finding suggests that ChatGLM has the potential to enhance the efficiency of question generation and alleviate the burden on teachers, providing a new perspective for the future development of educational assessment systems. Future research could explore further optimizations to the ChatGLM model to maintain high fit and hit rates while improving the clarity of questions and teachers' willingness to use them.
- Abstract(参考訳): 本研究では,高校情報技術試験の自動生成における大規模言語モデル(LLM)ChatGLMの適用性について検討した。
厳密に設計された迅速なエンジニアリング戦略を通じて、モデルは多様な質問を生成するためにガイドされ、ドメインの専門家によって包括的に評価される。
評価次元には、ヒッティング(授業内容との整合度)、フィッティング(中核的な能力の具現化度)、明瞭さ(質問記述の明示性)、ウィリング(教師が授業で質問を使いたいという意志)が含まれる。
以上の結果から,ChatGLMは,ヒット率と適合性に有意な差はないものの,明快さと教師の使い勝手において人為的な質問よりも優れていたことが示唆された。
このことから,ChatGLMは質問生成の効率を高め,教師の負担を軽減する可能性があり,今後の教育アセスメントシステムの発展に新たな視点をもたらすことが示唆された。
将来の研究は、ChatGLMモデルのさらなる最適化を探求し、高い適合率とヒット率を維持しつつ、質問の明確さと教師の利用意欲を改善していくだろう。
関連論文リスト
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - The Future of Learning in the Age of Generative AI: Automated Question Generation and Assessment with Large Language Models [0.0]
大規模言語モデル(LLM)と生成AIは、自然言語処理(NLP)に革命をもたらした。
本章では,自動質問生成と回答評価におけるLLMの変容の可能性について考察する。
論文 参考訳(メタデータ) (2024-10-12T15:54:53Z) - Application of Large Language Models in Automated Question Generation: A Case Study on ChatGLM's Structured Questions for National Teacher Certification Exams [2.7363336723930756]
本研究では,全国教師認定試験(NTCE)における構造化質問の自動生成における大規模言語モデル(LLM)ChatGLMの適用可能性について検討する。
筆者らは,ChatGLMを指導し,一連の模擬質問を生成するとともに,過去の質問を総合的に比較した。
研究結果は,ChatGLMが生み出した質問は,実際の試験質問と同様,高い合理性,科学的性,実践性を示すことを示している。
論文 参考訳(メタデータ) (2024-08-19T13:32:14Z) - Automated Educational Question Generation at Different Bloom's Skill Levels using Large Language Models: Strategies and Evaluation [0.0]
我々は,5つの最先端の大規模言語モデルを用いて,認知レベルの多様で高品質な質問を生成する能力について検討した。
以上の結果から,LLmsは適切な情報によって認知レベルが異なる関連性のある,高品質な教育的質問を生じさせる可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-08T11:56:57Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Retrieval-augmented Generation to Improve Math Question-Answering:
Trade-offs Between Groundedness and Human Preference [0.0]
我々は、高品質なオープンソースの数学教科書からコンテンツを検索して利用し、実際の学生の質問に対する応答を生成するプロンプトを設計する。
マルチ条件サーベイを実施し,中学代数学と幾何学QAのためのRAGシステムの有効性を評価した。
我々は、RAGは応答品質を向上させることができるが、数学のQAシステムの設計者は、学生が好む応答と、特定の教育資源に密接に適合する応答とのトレードオフを検討する必要があると論じる。
論文 参考訳(メタデータ) (2023-10-04T22:09:28Z) - Automating question generation from educational text [1.9325905076281444]
質問ベースの活動(QBA)の使用は、教育において広く普及しており、学習と評価プロセスの不可欠な部分を形成している。
学校における形式的・要約的評価のための自動質問生成ツールの設計と評価を行う。
論文 参考訳(メタデータ) (2023-09-26T15:18:44Z) - Covering Uncommon Ground: Gap-Focused Question Generation for Answer
Assessment [75.59538732476346]
このようなギャップに着目した質問(GFQ)を自動生成する問題に着目する。
タスクを定義し、優れたGFQの所望の側面を強調し、これらを満たすモデルを提案する。
論文 参考訳(メタデータ) (2023-07-06T22:21:42Z) - Quiz Design Task: Helping Teachers Create Quizzes with Automated
Question Generation [87.34509878569916]
本稿では,教師が読解クイズを自動生成するためのユースケースに焦点を当てた。
本研究は,クイズを構築中の教師が質問を受講し,それに応じるか,あるいは拒否するかのどちらかを理由として行う。
論文 参考訳(メタデータ) (2022-05-03T18:59:03Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。