論文の概要: A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education
- arxiv url: http://arxiv.org/abs/2501.05220v1
- Date: Thu, 09 Jan 2025 13:13:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:01:00.491539
- Title: A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education
- Title(参考訳): 教育におけるスケーラブルかつ自動トピック制御型質問生成への新しいアプローチ
- Authors: Ziqing Li, Mutlu Cukurova, Sahan Bulathwela,
- Abstract要約: 本稿では,質問の話題的焦点を制御する教育用質問生成手法について紹介する。
The proposed Topic-Controlled Question Generation (T-CQG) method has further thelevance and effect of the generated content for Education purposes。
厳密なオフラインおよび人間支援による評価の結果,提案モデルが高品質な話題中心の質問を効果的に生成できることが実証された。
- 参考スコア(独自算出の注目度): 6.9238760403459425
- License:
- Abstract: The development of Automatic Question Generation (QG) models has the potential to significantly improve educational practices by reducing the teacher workload associated with creating educational content. This paper introduces a novel approach to educational question generation that controls the topical focus of questions. The proposed Topic-Controlled Question Generation (T-CQG) method enhances the relevance and effectiveness of the generated content for educational purposes. Our approach uses fine-tuning on a pre-trained T5-small model, employing specially created datasets tailored to educational needs. The research further explores the impacts of pre-training strategies, quantisation, and data augmentation on the model's performance. We specifically address the challenge of generating semantically aligned questions with paragraph-level contexts, thereby improving the topic specificity of the generated questions. In addition, we introduce and explore novel evaluation methods to assess the topical relatedness of the generated questions. Our results, validated through rigorous offline and human-backed evaluations, demonstrate that the proposed models effectively generate high-quality, topic-focused questions. These models have the potential to reduce teacher workload and support personalised tutoring systems by serving as bespoke question generators. With its relatively small number of parameters, the proposals not only advance the capabilities of question generation models for handling specific educational topics but also offer a scalable solution that reduces infrastructure costs. This scalability makes them feasible for widespread use in education without reliance on proprietary large language models like ChatGPT.
- Abstract(参考訳): 自動質問生成(QG)モデルの開発は、教育コンテンツ作成に伴う教師の作業量を削減し、教育実践を著しく改善する可能性がある。
本稿では,質問の話題的焦点を制御する教育用質問生成手法について紹介する。
The proposed Topic-Controlled Question Generation (T-CQG) method has further thelevance and effect of the generated content for Education purposes。
我々のアプローチは、訓練済みのT5小モデルで微調整を使用しており、教育ニーズに合わせて特別に作成されたデータセットを使用している。
この研究は、事前トレーニング戦略、量子化、およびデータ拡張がモデルの性能に与える影響をさらに調査する。
具体的には、段落レベルの文脈で意味的に整合した質問を生成するという課題に対処し、生成した質問のトピック特異性を改善する。
さらに,生成した質問の話題的関連性を評価するための新しい評価手法を紹介し,検討する。
厳密なオフラインおよび人間支援による評価の結果,提案モデルが高品質な話題中心の質問を効果的に生成できることが実証された。
これらのモデルは、教師の作業量を削減し、おそろしい質問生成器として機能し、個人化された学習支援システムをサポートする可能性がある。
比較的少数のパラメータを持つこの提案は、特定の教育トピックを扱うための質問生成モデルの能力を前進させるだけでなく、インフラコストを削減するスケーラブルなソリューションも提供する。
このスケーラビリティにより、ChatGPTのようなプロプライエタリな大規模言語モデルに頼ることなく、教育で広く使用することができる。
関連論文リスト
- SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Research on the Application of Large Language Models in Automatic Question Generation: A Case Study of ChatGLM in the Context of High School Information Technology Curriculum [3.0753648264454547]
モデルは多様な質問を生成するためにガイドされ、ドメインの専門家によって包括的に評価される。
以上の結果から,ChatGLMは人為的な質問に対して,明快さと教師の利用意欲で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T11:38:32Z) - Application of Large Language Models in Automated Question Generation: A Case Study on ChatGLM's Structured Questions for National Teacher Certification Exams [2.7363336723930756]
本研究では,全国教師認定試験(NTCE)における構造化質問の自動生成における大規模言語モデル(LLM)ChatGLMの適用可能性について検討する。
筆者らは,ChatGLMを指導し,一連の模擬質問を生成するとともに,過去の質問を総合的に比較した。
研究結果は,ChatGLMが生み出した質問は,実際の試験質問と同様,高い合理性,科学的性,実践性を示すことを示している。
論文 参考訳(メタデータ) (2024-08-19T13:32:14Z) - Automating question generation from educational text [1.9325905076281444]
質問ベースの活動(QBA)の使用は、教育において広く普及しており、学習と評価プロセスの不可欠な部分を形成している。
学校における形式的・要約的評価のための自動質問生成ツールの設計と評価を行う。
論文 参考訳(メタデータ) (2023-09-26T15:18:44Z) - Practical and Ethical Challenges of Large Language Models in Education:
A Systematic Scoping Review [5.329514340780243]
大規模言語モデル(LLM)は、テキストコンテンツの生成と分析の面倒なプロセスを自動化する可能性がある。
これらの革新の実践性と倫理性には懸念がある。
我々は2017年以降に発行された118件の査読論文の体系的スコーピングレビューを行い、研究の現状を明らかにした。
論文 参考訳(メタデータ) (2023-03-17T18:14:46Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
本研究では,数学質問に対する児童生徒の回答に対する自動短解格付けの問題について検討する。
我々は、数学的な内容に適応した人気のある言語モデルBERTの変種である MathBERT をベースモデルとして使用しています。
第二に、言語モデルへの入力としてスコアリングサンプルを提供する、コンテキスト内学習アプローチを用いる。
論文 参考訳(メタデータ) (2022-05-30T16:26:02Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
対話型調査における知識駆動型フォローアップ質問生成のための新しい課題を提案する。
そこで我々は,対話履歴とラベル付き知識を用いた人手によるフォローアップ質問の新しいデータセットを構築した。
次に,その課題に対する2段階の知識駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-23T00:57:33Z) - Quiz Design Task: Helping Teachers Create Quizzes with Automated
Question Generation [87.34509878569916]
本稿では,教師が読解クイズを自動生成するためのユースケースに焦点を当てた。
本研究は,クイズを構築中の教師が質問を受講し,それに応じるか,あるいは拒否するかのどちらかを理由として行う。
論文 参考訳(メタデータ) (2022-05-03T18:59:03Z) - Educational Question Generation of Children Storybooks via Question Type Distribution Learning and Event-Centric Summarization [67.1483219601714]
本稿では,まず,入力記事段落の質問型分布を学習する新しい質問生成手法を提案する。
学習用問合せペアで構成された銀のサンプルを用いて,事前学習したトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを構築する。
本研究は,質問型分布学習とイベント中心の要約生成の分離の必要性を示唆するものである。
論文 参考訳(メタデータ) (2022-03-27T02:21:19Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。