Quantum Calculation for Two-Stream Instability and Advection Test of Vlasov-Maxwell Equations: Numerical Evaluation of Hamiltonian Simulation
- URL: http://arxiv.org/abs/2408.11550v1
- Date: Wed, 21 Aug 2024 11:56:55 GMT
- Title: Quantum Calculation for Two-Stream Instability and Advection Test of Vlasov-Maxwell Equations: Numerical Evaluation of Hamiltonian Simulation
- Authors: Hayato Higuchi, Juan W. Pedersen, Kiichiro Toyoizumi, Kohji Yoshikawa, Chusei Kiumi, Akimasa Yoshikawa,
- Abstract summary: We develop a quantum-classical hybrid Vlasov-Maxwell solver.
We perform numerical simulation of a 1D advection test and a 1D1V two-stream instability test.
Our quantum algorithm is robust under larger time steps compared with classical algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Vlasov-Maxwell equations provide kinetic simulations of collisionless plasmas, but numerically solving them on classical computers is often impractical. This is due to the computational resource constraints imposed by the time evolution in the 6-dimensional phase space, which requires broad spatial and temporal scales. In this study, we develop a quantum-classical hybrid Vlasov-Maxwell solver. Specifically, the Vlasov solver implements the Hamiltonian simulation based on Quantum Singular Value Transformation (QSVT), coupled with a classical Maxwell solver. We perform numerical simulation of a 1D advection test and a 1D1V two-stream instability test on the Qiskit-Aer-GPU quantum circuit emulator with an A100 GPU. The computational complexity of our quantum algorithm can potentially be reduced from the classical $O(N^6T^2)$ to $O(\text{poly}(\log(N),N,T))$ for the $N$ grid system and simulation time $T$. Furthermore, the numerical analysis reveals that our quantum algorithm is robust under larger time steps compared with classical algorithms with the constraint of Courant-Friedrichs-Lewy (CFL) condition.
Related papers
- Leapfrogging Sycamore: Harnessing 1432 GPUs for 7$\times$ Faster Quantum Random Circuit Sampling [40.83618005962484]
Random quantum circuit sampling serves as a benchmark to demonstrate quantum computational advantage.
Recent progress in classical algorithms has significantly reduced the classical simulation time.
Our work provides the first unambiguous experimental evidence to refute textitSycamore's claim of quantum advantage.
arXiv Detail & Related papers (2024-06-27T05:01:47Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
We build on an idea based on linear combination of unitaries to simulate non-unitary, non-Hermitian quantum systems.
We generate hybrid quantum-classical algorithms that efficiently perform iterative matrix-vector multiplication and matrix inversion operations.
arXiv Detail & Related papers (2024-05-16T02:14:58Z) - Sparse Simulation of VQE Circuits for Quantum Chemistry [0.0]
Variational Quantum Eigensolver (VQE) is a promising algorithm for future Noisy Intermediate-Scale Quantum (NISQ) devices.
In this paper, we consider the classical simulation of the iterative Qubit Coupled Cluster (iQCC) ansatz.
arXiv Detail & Related papers (2024-04-15T18:00:05Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
We present variational quantum algorithms (VQAs) that encode both space and time in qubit registers.
The spacetime encoding enables us to obtain the entire time evolution from a single ground-state computation.
arXiv Detail & Related papers (2024-03-25T14:06:18Z) - Hybrid quantum algorithms for flow problems [0.0]
We debut here a high performance quantum simulator which we term QFlowS (Quantum Flow Simulator)
We first choose to simulate two well known flows using QFlowS and demonstrate a previously unseen, full gate-level implementation of a hybrid and high precision Quantum Linear Systems Algorithms (QLSA)
This work suggests a path towards quantum simulation of fluid flows, and highlights the special considerations needed at the gate level implementation of QC.
arXiv Detail & Related papers (2023-07-01T17:39:21Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum algorithm for collisionless Boltzmann simulation of self-gravitating systems [0.0]
We propose an efficient quantum algorithm to solve the collisionless Boltzmann equation (CBE)
We extend the algorithm to perform quantum simulations of self-gravitating systems, incorporating the method to calculate gravity.
It will allow us to perform large-scale CBE simulations on future quantum computers.
arXiv Detail & Related papers (2023-03-29T06:59:00Z) - Large-scale simulations of Floquet physics on near-term quantum computers [0.3252295747842729]
We introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware.
Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian.
arXiv Detail & Related papers (2023-03-03T20:45:01Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.