Don't Kill the Baby: The Case for AI in Arbitration
- URL: http://arxiv.org/abs/2408.11608v1
- Date: Wed, 21 Aug 2024 13:34:20 GMT
- Title: Don't Kill the Baby: The Case for AI in Arbitration
- Authors: Michael Broyde, Yiyang Mei,
- Abstract summary: Article argues that the FAA allows parties to contractually choose AI-driven arbitration, despite traditional reservations.
By advocating for the use of AI in arbitration, it underscores the importance of respecting contractual autonomy.
Ultimately, it calls for a balanced, open-minded approach to AI in arbitration, recognizing its potential to enhance the efficiency, fairness, and flexibility of dispute resolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the introduction of Generative AI (GenAI) in 2022, its ability to simulate human intelligence and generate content has sparked both enthusiasm and concern. While much criticism focuses on AI's potential to perpetuate bias, create emotional dissonance, displace jobs, and raise ethical questions, these concerns often overlook the practical benefits of AI, particularly in legal contexts. This article examines the integration of AI into arbitration, arguing that the Federal Arbitration Act (FAA) allows parties to contractually choose AI-driven arbitration, despite traditional reservations. The article makes three key contributions: (1) It shifts the focus from debates over AI's personhood to the practical aspects of incorporating AI into arbitration, asserting that AI can effectively serve as an arbitrator if both parties agree; (2) It positions arbitration as an ideal starting point for broader AI adoption in the legal field, given its flexibility and the autonomy it grants parties to define their standards of fairness; and (3) It outlines future research directions, emphasizing the importance of empirically comparing AI and human arbitration, which could lead to the development of distinct systems. By advocating for the use of AI in arbitration, this article underscores the importance of respecting contractual autonomy and creating an environment that allows AI's potential to be fully realized. Drawing on the insights of Judge Richard Posner, the article argues that the ethical obligations of AI in arbitration should be understood within the context of its technological strengths and the voluntary nature of arbitration agreements. Ultimately, it calls for a balanced, open-minded approach to AI in arbitration, recognizing its potential to enhance the efficiency, fairness, and flexibility of dispute resolution
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Commercial AI, Conflict, and Moral Responsibility: A theoretical
analysis and practical approach to the moral responsibilities associated with
dual-use AI technology [2.050345881732981]
We argue that stakeholders involved in the AI system lifecycle are morally responsible for uses of their systems that are reasonably foreseeable.
We present three technically feasible actions that developers of civilian AIs can take to potentially mitigate their moral responsibility.
arXiv Detail & Related papers (2024-01-30T18:09:45Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
This essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks.
We believe this represents the "comprehension" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires "understanding" policy.
arXiv Detail & Related papers (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - AI loyalty: A New Paradigm for Aligning Stakeholder Interests [0.0]
We argue that AI loyalty should be considered during the technological design process alongside other important values in AI ethics.
We discuss a range of mechanisms that could support incorporation of AI loyalty into a variety of future AI systems.
arXiv Detail & Related papers (2020-03-24T23:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.