論文の概要: Mathematical Information Retrieval: Search and Question Answering
- arxiv url: http://arxiv.org/abs/2408.11646v1
- Date: Wed, 21 Aug 2024 14:17:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:22:29.527871
- Title: Mathematical Information Retrieval: Search and Question Answering
- Title(参考訳): 数学的情報検索:検索と質問応答
- Authors: Richard Zanibbi, Behrooz Mansouri, Anurag Agarwal,
- Abstract要約: マルチモーダル検索エンジンと数学的質問応答システムは、数学関連の質問に答えるのに役立つ。
この本は、私たちが数学関連の質問に答えるために働くときに人やシステムが実行する情報タスクを特徴づける単純なフレームワークから始まります。
- 参考スコア(独自算出の注目度): 6.192472816262214
- License:
- Abstract: Mathematical information is essential for technical work, but its creation, interpretation, and search are challenging. To help address these challenges, researchers have developed multimodal search engines and mathematical question answering systems. This book begins with a simple framework characterizing the information tasks that people and systems perform as we work to answer math-related questions. The framework is used to organize and relate the other core topics of the book, including interactions between people and systems, representing math formulas in sources, and evaluation. We close with some key questions and concrete directions for future work. This book is intended for use by students, instructors, and researchers, and those who simply wish that it was easier to find and use mathematical information
- Abstract(参考訳): 数学的情報は技術的作業には不可欠であるが、その生成、解釈、探索は困難である。
これらの課題に対処するために、研究者はマルチモーダル検索エンジンと数学的質問応答システムを開発した。
この本は、私たちが数学関連の質問に答えるために働くときに人やシステムが実行する情報タスクを特徴づける単純なフレームワークから始まります。
このフレームワークは、人とシステム間の相互作用、情報源の数学公式の表現、評価など、本書の他の中核的なトピックを整理し、関連付けるために使用される。
今後の仕事について、いくつかの重要な質問と具体的な方向性を締めくくっている。
本書は, 学生, インストラクター, 研究者, そして, 数学的情報を見つけやすく, 利用しやすいことを願う者を対象にしている。
関連論文リスト
- FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI [2.1061205911958876]
FrontierMath(フロンティアマス、フロンティアマス、FrontierMath)は、数学者が考案し検証した何百もの数学問題のベンチマークである。
現在の最先端のAIモデルは、問題の2%未満を解決し、AI能力と数学的コミュニティの長所との間に大きなギャップが浮かび上がっている。
AIシステムが専門家レベルの数学的能力に向かって進むにつれ、FrontierMathは彼らの進歩を定量化する厳格なテストベッドを提供する。
論文 参考訳(メタデータ) (2024-11-07T17:07:35Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
本稿では,数学的問題表現,すなわち QuesCo に対する対照的な事前学習手法を提案する。
まず、コンテンツレベルと構造レベルを含む2段階の質問強化を設計し、類似した目的で文字通り多様な質問ペアを生成する。
そこで我々は,知識概念の階層的情報を完全に活用するために,知識階層を意識したランク戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T14:23:29Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Automatic Generation of Socratic Subquestions for Teaching Math Word
Problems [16.97827669744673]
本稿では,大言語モデル (LM) が数学用語の問題解決を導くためのシーケンシャルな質問を生成する能力について検討する。
自動品質評価と人的品質評価の両方において,所望の質問特性に制約されたLMが優れた質問を生成することがわかった。
その結果,課題の難易度は,質問が人間のパフォーマンスを損なうか否かを判断する上で重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T10:40:22Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - A Neural Network Solves and Generates Mathematics Problems by Program
Synthesis: Calculus, Differential Equations, Linear Algebra, and More [8.437319139670116]
質問をプログラミングタスクに変換し、プログラムを自動的に生成し、実行します。
これは、大学レベルの数学コースの質問を自動的に解き、評価し、生成する最初の作品である。
論文 参考訳(メタデータ) (2021-12-31T18:57:31Z) - Learning to Match Mathematical Statements with Proofs [37.38969121408295]
このタスクは、研究レベルの数学的テキストの処理を改善するために設計されている。
我々は180k以上の文対からなるタスク用のデータセットをリリースする。
課題をグローバルに検討し,重み付き二部マッチングアルゴリズムを用いることで,課題に対処できることが示唆された。
論文 参考訳(メタデータ) (2021-02-03T15:38:54Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
我々は,1)知識グラフ表現学習,2)知識獲得と完成,3)時間的知識グラフ,および4)知識認識アプリケーションに関する研究トピックをレビューする。
知識獲得、特に知識グラフの完成、埋め込み方法、経路推論、論理ルール推論について概観する。
メタラーニング、コモンセンス推論、時間的知識グラフなど、いくつかの新しいトピックを探求する。
論文 参考訳(メタデータ) (2020-02-02T13:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。