論文の概要: Automating Semantic Analysis of System Assurance Cases using Goal-directed ASP
- arxiv url: http://arxiv.org/abs/2408.11699v2
- Date: Thu, 29 Aug 2024 20:52:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-02 17:38:32.974733
- Title: Automating Semantic Analysis of System Assurance Cases using Goal-directed ASP
- Title(参考訳): Goal-directed ASP を用いたシステム保証事例のセマンティック解析の自動化
- Authors: Anitha Murugesan, Isaac Wong, Joaquín Arias, Robert Stroud, Srivatsan Varadarajan, Elmer Salazar, Gopal Gupta, Robin Bloomfield, John Rushby,
- Abstract要約: 本稿では, セマンティックルールに基づく分析機能を備えた Assurance 2.0 の拡張手法を提案する。
本稿では, 論理的整合性, 妥当性, 不整合性など, 保証事例のユニークな意味的側面について考察する。
- 参考スコア(独自算出の注目度): 1.2189422792863451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assurance cases offer a structured way to present arguments and evidence for certification of systems where safety and security are critical. However, creating and evaluating these assurance cases can be complex and challenging, even for systems of moderate complexity. Therefore, there is a growing need to develop new automation methods for these tasks. While most existing assurance case tools focus on automating structural aspects, they lack the ability to fully assess the semantic coherence and correctness of the assurance arguments. In prior work, we introduced the Assurance 2.0 framework that prioritizes the reasoning process, evidence utilization, and explicit delineation of counter-claims (defeaters) and counter-evidence. In this paper, we present our approach to enhancing Assurance 2.0 with semantic rule-based analysis capabilities using common-sense reasoning and answer set programming solvers, specifically s(CASP). By employing these analysis techniques, we examine the unique semantic aspects of assurance cases, such as logical consistency, adequacy, indefeasibility, etc. The application of these analyses provides both system developers and evaluators with increased confidence about the assurance case.
- Abstract(参考訳): 保証ケースは、安全とセキュリティが重要となるシステムの認証に関する議論と証拠を示すための構造化された方法を提供する。
しかしながら、これらの保証ケースの作成と評価は、適度な複雑さのシステムであっても複雑で困難である可能性がある。
そのため、これらのタスクのための新しい自動化手法を開発する必要性が高まっている。
既存の保証ケースツールは構造的側面の自動化に重点を置いているが、保証引数のセマンティックコヒーレンスと正確性を完全に評価する能力は欠如している。
従来の作業では、推論プロセス、エビデンス利用、およびデファタ(デファタ)と反証拠の明確な記述を優先するAssurance 2.0フレームワークを導入しました。
本稿では,共通センス推論と解集合プログラミングの解法,特にs(CASP)を用いて,意味ルールに基づく分析機能を備えた Assurance 2.0 の拡張手法を提案する。
これらの分析手法を用いることで、論理的整合性、妥当性、不実現性など、保証事例のユニークな意味的側面を考察する。
これらの分析の応用は、システム開発者と評価者の両方に、保証ケースに対する信頼性を高めます。
関連論文リスト
- Reasoning Under Threat: Symbolic and Neural Techniques for Cybersecurity Verification [0.0]
本調査では,サイバーセキュリティにおける自動推論の役割について概観する。
我々は、SOTAツールとフレームワークを調べ、ニューラルシンボリック推論のためのAIとの統合を調査し、重要な研究ギャップを浮き彫りにする。
本稿は,安全なシステム開発を促進することを目的とした,先進的な研究の方向性の集合をまとめてまとめる。
論文 参考訳(メタデータ) (2025-03-27T11:41:53Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - A Taxonomy of Real-World Defeaters in Safety Assurance Cases [4.4398355848251745]
ソフトウェアエンジニアリングコミュニティは、ソフトウェア保証ケースにおける現実世界の敗者の再利用可能な分類の恩恵を受けることができる。
安全クリティカルシステムにおける敗者の分析・管理を標準化するための基礎を築き,7つの幅広いカテゴリーの分類学を導出した。
論文 参考訳(メタデータ) (2025-02-01T00:38:41Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - A PRISMA-Driven Bibliometric Analysis of the Scientific Literature on Assurance Case Patterns [7.930875992631788]
保証ケースはシステム障害を防ぐために使用できる。
それらは構造化された議論であり、様々な安全クリティカルなシステムの要求を議論し、中継することができる。
論文 参考訳(メタデータ) (2024-07-06T05:00:49Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - ACCESS: Assurance Case Centric Engineering of Safety-critical Systems [9.388301205192082]
保証ケースは、安全性やセキュリティなどの重要なシステム特性について、コミュニケーションし、信頼性を評価するために使用されます。
近年,システム保証活動の効率化と品質向上のために,モデルに基づくシステム保証アプローチが普及している。
モデルに基づくシステム保証ケースが異種工学的アーティファクトにどのように辿り着くかを示す。
論文 参考訳(メタデータ) (2024-03-22T14:29:50Z) - Towards Continuous Assurance Case Creation for ADS with the Evidential
Tool Bus [0.4194295877935868]
保証ケースは、安全クリティカルなシステムの認証に不可欠な要素となっている。
本稿では,ツール統合フレームワーク Evidential Tool Bus (ETB) を利用した保証ケースの構築と継続的メンテナンスの予備的経験について報告する。
論文 参考訳(メタデータ) (2024-03-04T10:32:48Z) - I came, I saw, I certified: some perspectives on the safety assurance of
cyber-physical systems [5.9395940943056384]
サイバー物理システムの実行が失敗すると、生命の喪失、重傷、大規模な環境被害、資産破壊、そして大きな経済損失が生じる。
しばしば、規制機関がそのような制度を認定することを正当化し許すために、説得力のある保証ケースを開発することが義務付けられている。
我々は、保証イネーブラーのような課題を探求し、それらに取り組むための潜在的な方向性を概説する。
論文 参考訳(メタデータ) (2024-01-30T00:06:16Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - Integrating Testing and Operation-related Quantitative Evidences in
Assurance Cases to Argue Safety of Data-Driven AI/ML Components [2.064612766965483]
将来的には、AIは人間の身体に害を与える可能性のあるシステムに、ますます浸透していくだろう。
このような安全クリティカルなシステムでは、その残留リスクが許容範囲を超えないことが証明されなければならない。
本稿では,目標達成のためのより包括的な議論構造を提案する。
論文 参考訳(メタデータ) (2022-02-10T20:35:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。