論文の概要: On Learnable Parameters of Optimal and Suboptimal Deep Learning Models
- arxiv url: http://arxiv.org/abs/2408.11720v1
- Date: Wed, 21 Aug 2024 15:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:28:00.782034
- Title: On Learnable Parameters of Optimal and Suboptimal Deep Learning Models
- Title(参考訳): 最適・準最適深層学習モデルの学習パラメータについて
- Authors: Ziwei Zheng, Huizhi Liang, Vaclav Snasel, Vito Latora, Panos Pardalos, Giuseppe Nicosia, Varun Ojha,
- Abstract要約: ディープラーニングモデルの構造的および運用的側面について検討する。
本研究は,学習可能なパラメータ(重み)統計,分布,ノード間相互作用,可視化のニュアンスに着目した。
- 参考スコア(独自算出の注目度): 2.889799048595314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We scrutinize the structural and operational aspects of deep learning models, particularly focusing on the nuances of learnable parameters (weight) statistics, distribution, node interaction, and visualization. By establishing correlations between variance in weight patterns and overall network performance, we investigate the varying (optimal and suboptimal) performances of various deep-learning models. Our empirical analysis extends across widely recognized datasets such as MNIST, Fashion-MNIST, and CIFAR-10, and various deep learning models such as deep neural networks (DNNs), convolutional neural networks (CNNs), and vision transformer (ViT), enabling us to pinpoint characteristics of learnable parameters that correlate with successful networks. Through extensive experiments on the diverse architectures of deep learning models, we shed light on the critical factors that influence the functionality and efficiency of DNNs. Our findings reveal that successful networks, irrespective of datasets or models, are invariably similar to other successful networks in their converged weights statistics and distribution, while poor-performing networks vary in their weights. In addition, our research shows that the learnable parameters of widely varied deep learning models such as DNN, CNN, and ViT exhibit similar learning characteristics.
- Abstract(参考訳): ディープラーニングモデルの構造的および運用的側面について,特に学習可能なパラメータ(重み)統計,分布,ノード間相互作用,可視化のニュアンスに注目した。
重みパターンのばらつきと全体のネットワーク性能の相関関係を定式化することにより,様々な深層学習モデルの最適・準最適性能について検討する。
我々の経験分析は、MNIST、Fashion-MNIST、CIFAR-10といった広く知られているデータセットや、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、ビジョントランスフォーマー(ViT)といった様々なディープラーニングモデルにまたがって拡張されており、ネットワークの成功と相関する学習可能なパラメータの特徴を特定できる。
ディープラーニングモデルの多様なアーキテクチャに関する広範な実験を通じて、我々はDNNの機能と効率に影響を与える重要な要素に光を当てた。
その結果、データセットやモデルに関わらず、成功したネットワークは、収束した重み統計と分布において、他の成功したネットワークと常に類似していることが判明した。
さらに,本研究では,DNN,CNN,ViTなどの幅広い深層学習モデルの学習パラメータが類似した学習特性を示すことを示す。
関連論文リスト
- Spiking Neural Networks in Vertical Federated Learning: Performance Trade-offs [2.1756721838833797]
フェデレートされた機械学習は、複数のクライアントにわたるモデルトレーニングを可能にする。
Vertical Federated Learning (VFL)は、クライアントが同じサンプルの異なる機能セットを持つインスタンスを扱う。
スパイキングニューラルネットワーク(SNN)は、エッジでの高速かつ正確な処理を可能にするために活用されている。
論文 参考訳(メタデータ) (2024-07-24T23:31:02Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - LowDINO -- A Low Parameter Self Supervised Learning Model [0.0]
本研究は,小規模ネットワークが巨大ネットワークの特性を活用可能なニューラルネットワークアーキテクチャの設計の可能性を検討することを目的とする。
これまでの研究では、畳み込みニューラルネットワーク(ConvNet)を使用することで、固有の帰納バイアスが得られることが示されている。
パラメータの数を減らすために、MobileViTブロックを使用してアテンションメカニズムを利用する。
論文 参考訳(メタデータ) (2023-05-28T18:34:59Z) - A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU [0.40498500266986387]
機械学習(ML)と人工知能(AI)の強力なサブセットとして、ディープラーニング(DL)が登場した
その影響は、音声認識、ヘルスケア、自動運転車、サイバーセキュリティ、予測分析など、さまざまな分野に及んでいる。
我々は、CNN、リカレントニューラルネットワーク(RNN)、生成モデル、深層強化学習(DRL)、深層移動学習など、さまざまなディープラーニングモデルの総合的な調査を行う。
論文 参考訳(メタデータ) (2023-05-27T13:23:21Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
CNNのアーキテクチャと性能の関係について検討する。
本稿では,2つのコンピュータビジョンに基づく物理問題において,その特性がネットワークの性能を予測できることを示す。
我々は機械学習モデルを用いて、トレーニング前にネットワークが一定のしきい値精度よりも優れた性能を発揮できるかどうかを予測する。
論文 参考訳(メタデータ) (2020-01-07T16:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。