論文の概要: Understanding Depth and Height Perception in Large Visual-Language Models
- arxiv url: http://arxiv.org/abs/2408.11748v4
- Date: Thu, 03 Apr 2025 15:06:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:54:13.904142
- Title: Understanding Depth and Height Perception in Large Visual-Language Models
- Title(参考訳): 大規模視覚言語モデルにおける深度と高さ知覚の理解
- Authors: Shehreen Azad, Yash Jain, Rishit Garg, Yogesh S Rawat, Vibhav Vineet,
- Abstract要約: 視覚言語モデル(VLM)の幾何学的理解を評価することに注力する。
形状や大きさといった基本的な幾何学的性質の知覚には優れていますが、深さや高さの知覚には一貫して苦労しています。
本研究の目的は, 幾何学的理解を深めた VLM の開発方法を明らかにすることである。
- 参考スコア(独自算出の注目度): 21.209275651704758
- License:
- Abstract: Geometric understanding - including depth and height perception - is fundamental to intelligence and crucial for navigating our environment. Despite the impressive capabilities of large Vision Language Models (VLMs), it remains unclear how well they possess the geometric understanding required for practical applications in visual perception. In this work, we focus on evaluating the geometric understanding of these models, specifically targeting their ability to perceive the depth and height of objects in an image. To address this, we introduce GeoMeter, a suite of benchmark datasets - encompassing 2D and 3D scenarios - to rigorously evaluate these aspects. By benchmarking 18 state-of-the-art VLMs, we found that although they excel in perceiving basic geometric properties like shape and size, they consistently struggle with depth and height perception. Our analysis reveal that these challenges stem from shortcomings in their depth and height reasoning capabilities and inherent biases. This study aims to pave the way for developing VLMs with enhanced geometric understanding by emphasizing depth and height perception as critical components necessary for real-world applications.
- Abstract(参考訳): 深度や高さの知覚を含む幾何学的理解は知性の基本であり、環境をナビゲートするのに不可欠です。
大きな視覚言語モデル(VLM)の印象的な能力にもかかわらず、視覚知覚の実践的な応用に必要な幾何学的理解がどの程度優れているかは、いまだに不明である。
本研究では,画像中の物体の深さや高さを知覚する能力に着目し,これらのモデルの幾何学的理解を評価することに焦点を当てる。
これに対処するため、2Dシナリオと3Dシナリオを含むベンチマークデータセットのスイートであるGeoMeterを紹介して、これらの側面を厳格に評価する。
18の最先端のVLMをベンチマークすることで、形状や大きさといった基本的な幾何学的性質の知覚に優れていますが、深さや高さの知覚には一貫して苦労しています。
分析の結果,これらの課題は深度と高さの推論能力と固有のバイアスの不足に起因することが明らかとなった。
本研究の目的は、深度と高さの知覚を現実世界のアプリケーションに必要な重要な要素として強調することにより、幾何学的理解を深めたVLMの開発方法を明らかにすることである。
関連論文リスト
- GePBench: Evaluating Fundamental Geometric Perception for Multimodal Large Language Models [34.647839550142834]
本稿では,MLLMの幾何学的知覚能力を評価するための新しいベンチマークであるGePBenchを紹介する。
評価の結果,現在最先端のMLLMは幾何学的知覚タスクに重大な欠陥があることが明らかとなった。
GePBenchデータを用いてトレーニングしたモデルは、幅広いベンチマークタスクにおいて大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2024-12-30T16:01:43Z) - Textured Mesh Saliency: Bridging Geometry and Texture for Human Perception in 3D Graphics [50.23625950905638]
6自由度(6-DOF)VR環境下での革新的な視線追跡実験により構築したテクスチャメッシュ・サリエンシのための新しいデータセットを提案する。
本モデルでは,各三角形の面を個々の単位として扱い,各局所表面領域の重要性を反映した塩分濃度値を割り当てることで,テクスチャメッシュ表面の塩分濃度マップを推定する。
論文 参考訳(メタデータ) (2024-12-11T08:27:33Z) - GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding [53.42728468191711]
Open-Vocabulary 3D object affordance groundingは、任意の命令で3Dオブジェクト上のアクション可能性の領域を予測することを目的としている。
GREAT (GeometRy-intEntion collAboraTive Inference) を提案する。
論文 参考訳(メタデータ) (2024-11-29T11:23:15Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
幾何学問題のレンズを用いて視覚言語モデル(VLM)を様々な軸に沿って評価する。
複数の軸に沿った制御可能な難易度を持つ幾何学的質問の合成データセットを手続き的に作成する。
最新のVLMのベンチマークを用いて得られた実験結果から,これらのモデルが幾何学的対象に適さないことが示された。
論文 参考訳(メタデータ) (2023-12-19T15:25:39Z) - Weakly Supervised Relative Spatial Reasoning for Visual Question
Answering [38.05223339919346]
我々は,V&Lモデルの忠実度をこのような幾何学的理解に向けて評価する。
我々は、市販の深度推定器から弱い監督でV&Lを訓練する。
これにより、"GQA"視覚的質問応答チャレンジの精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-09-04T21:29:06Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - DONet: Learning Category-Level 6D Object Pose and Size Estimation from
Depth Observation [53.55300278592281]
単一深度画像からカテゴリレベルの6次元オブジェクト・ポースとサイズ推定(COPSE)を提案する。
筆者らのフレームワークは,深度チャネルのみの物体のリッチな幾何学的情報に基づいて推論を行う。
我々のフレームワークは、ラベル付き現実世界の画像を必要とする最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-06-27T10:41:50Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
深度予測における高次3次元幾何学的制約の重要性を示す。
単純な幾何学的制約を強制する損失項を設計することにより、単眼深度推定の精度とロバスト性を大幅に改善する。
The-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI。
論文 参考訳(メタデータ) (2021-03-07T00:08:21Z) - Learning to Reconstruct and Segment 3D Objects [4.709764624933227]
我々は、ディープニューラルネットワークを用いて一般的な、堅牢な表現を学習することで、その中のシーンやオブジェクトを理解することを目指している。
この論文は、単一または複数ビューからのオブジェクトレベルの3次元形状推定からシーンレベルのセマンティック理解までの3つのコアコントリビューションである。
論文 参考訳(メタデータ) (2020-10-19T15:09:04Z) - Learning Depth With Very Sparse Supervision [57.911425589947314]
本稿では, 環境との相互作用を通じて, 知覚が世界の3次元特性と結合するという考えを考察する。
我々は、環境と対話するロボットが利用できるような、特殊なグローバルローカルネットワークアーキテクチャを訓練する。
いくつかのデータセットの実験では、画像ピクセルの1つでも基底真理が利用できる場合、提案されたネットワークは、最先端のアプローチよりも22.5%の精度でモノクロの深度推定を学習できることを示している。
論文 参考訳(メタデータ) (2020-03-02T10:44:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。