論文の概要: ACE: A Cross-Platform Visual-Exoskeletons System for Low-Cost Dexterous Teleoperation
- arxiv url: http://arxiv.org/abs/2408.11805v1
- Date: Wed, 21 Aug 2024 17:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 15:58:35.764964
- Title: ACE: A Cross-Platform Visual-Exoskeletons System for Low-Cost Dexterous Teleoperation
- Title(参考訳): ACE:低コスト軸テレオペレーティングのためのクロスプラットフォームビジュアル・エクソスケレトンシステム
- Authors: Shiqi Yang, Minghuan Liu, Yuzhe Qin, Runyu Ding, Jialong Li, Xuxin Cheng, Ruihan Yang, Sha Yi, Xiaolong Wang,
- Abstract要約: 多様なロボットプラットフォームにまたがる効率的な遠隔操作システムの構築は、これまで以上に重要になっている。
我々は、低コストなデキスタラス遠隔操作のためのクロスプラットフォームビジュアル・エクソスケルトンシステムであるACEを開発した。
従来のシステムと比較して、我々の単一のシステムは、高精度な遠隔操作を備えたヒューマノイドハンド、アームハンド、アームグリッパー、四重化グリッパーシステムに一般化することができる。
- 参考スコア(独自算出の注目度): 25.679146657293778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
- Abstract(参考訳): デモから学ぶことは、特に最近収集された遠隔操作システムを備えた大規模ロボットデータにおいて、ロボット操作に対する効果的なアプローチであることが示されている。
多様なロボットプラットフォームにまたがる効率的な遠隔操作システムの構築は、これまで以上に重要になっている。
しかし、様々なエンドエフェクター(例えば人為的ロボットハンドやグリップなど)に対する費用対効果とユーザフレンドリーな遠隔操作システムが欠如しており、複数のプラットフォームで動作可能である。
そこで我々は,低コストな遠隔操作のためのクロスプラットフォームビジュアル・エクソスケルトンシステムであるACEを開発した。
本システムでは,携帯型ベースに装着した3Dハンドポーズとエクソスケルトンを手持ちカメラで撮影し,指と手首の両方のポーズの正確なリアルタイムキャプチャを可能にした。
従来のシステムと比較すると、ロボットによってハードウェアのカスタマイズが必要な場合が多いが、人間の手や腕、腕のグリッパー、四足歩行システムなど、高精度な遠隔操作が可能である。
これにより、多様なプラットフォーム上の複雑な操作タスクの模倣学習が可能になる。
関連論文リスト
- Open-TeleVision: Teleoperation with Immersive Active Visual Feedback [17.505318269362512]
Open-TeleVisionは、オペレーターが立体的にロボットの周囲を積極的に知覚することを可能にする。
このシステムは操作者の腕と手の動きをロボットに反映し、没入感のある体験を作り出す。
本システムの有効性は,長期的かつ正確な4つの課題に対して,データ収集と模倣学習ポリシーの訓練によって検証する。
論文 参考訳(メタデータ) (2024-07-01T17:55:35Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
マルチフィンガーハンドとバイソタクティブルデータを用いたバイマニアルシステムを用いて,人間の実演からの学習を探索する。
以上の結果から,バイスオタクティブルデータからの両指多指操作における有望な進歩が示唆された。
論文 参考訳(メタデータ) (2024-04-25T17:59:41Z) - RealDex: Towards Human-like Grasping for Robotic Dexterous Hand [64.47045863999061]
本稿では,人間の行動パターンを取り入れた手の動きを正確に把握する先駆的データセットであるRealDexを紹介する。
RealDexは、現実のシナリオにおける認識、認識、操作を自動化するためのヒューマノイドロボットを進化させる上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-02-21T14:59:46Z) - Amplifying robotics capacities with a human touch: An immersive
low-latency panoramic remote system [16.97496024217201]
アバター (Avatar) システムは, 没入型低遅延パノラマロボットインタラクションプラットフォームである。
良好なネットワーク条件下では,357msの遅延で低遅延高精細パノラマ視体験を達成できた。
このシステムは、キャンパス、州、国、大陸にまたがる広大な物理的な距離を遠隔操作できる。
論文 参考訳(メタデータ) (2024-01-07T06:55:41Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - AnyTeleop: A General Vision-Based Dexterous Robot Arm-Hand Teleoperation System [51.48191418148764]
ビジョンベースの遠隔操作は、人間レベルの知性をロボットに与え、環境と対話させる。
現在のビジョンベースの遠隔操作システムは、特定のロボットモデルとデプロイ環境に向けて設計・設計されている。
我々は、複数の異なる腕、手、現実、カメラ構成を単一のシステム内でサポートする、統一的で汎用的な遠隔操作システムであるAnyTeleopを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:11:07Z) - From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation [26.738893736520364]
我々は,iPadとコンピュータのみで3Dデモを効率的に収集する,新しい単一カメラ遠隔操作システムを提案する。
我々は,操作者の手の構造と形状が同じであるマニピュレータである物理シミュレータにおいて,各ユーザ向けにカスタマイズされたロボットハンドを構築する。
データを用いた模倣学習では、複数の複雑な操作タスクでベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2022-04-26T17:59:51Z) - DexVIP: Learning Dexterous Grasping with Human Hand Pose Priors from
Video [86.49357517864937]
DexVIPは,人間と物体のインタラクションビデオから,器用なロボットの把握を学習する手法である。
我々は、人間とオブジェクトのインタラクションビデオから把握した画像をキュレートし、エージェントの手のポーズに先行する。
DexVIPは、手ポーズの無い既存のアプローチや、特殊な遠隔操作機器に頼っている既存のアプローチと良好に比較できることを実証する。
論文 参考訳(メタデータ) (2022-02-01T00:45:57Z) - A Mobile Robot Hand-Arm Teleoperation System by Vision and IMU [25.451864296962288]
本稿では,新しい視覚に基づく手ポーズ回帰ネットワーク(Transteleop)とIMUによる腕追跡手法を提案する。
Transteleopは低コストの深度カメラを通して人間の手を観察し、ペアのロボットハンドポーズの深度画像を生成する。
ウェアラブルカメラホルダは、同時ハンドアーム制御を可能にし、遠隔操作システム全体の移動を容易にする。
論文 参考訳(メタデータ) (2020-03-11T10:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。