MicroXercise: A Micro-Level Comparative and Explainable System for Remote Physical Therapy
- URL: http://arxiv.org/abs/2408.11837v1
- Date: Tue, 6 Aug 2024 22:39:47 GMT
- Title: MicroXercise: A Micro-Level Comparative and Explainable System for Remote Physical Therapy
- Authors: Hanchen David Wang, Nibraas Khan, Anna Chen, Nilanjan Sarkar, Pamela Wisniewski, Meiyi Ma,
- Abstract summary: MicroXercise integrates micro-motion analysis with wearable sensors.
It provides therapists and patients with a comprehensive feedback interface, including video, text, and scores.
- Score: 2.664550951313621
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent global estimates suggest that as many as 2.41 billion individuals have health conditions that would benefit from rehabilitation services. Home-based Physical Therapy (PT) faces significant challenges in providing interactive feedback and meaningful observation for therapists and patients. To fill this gap, we present MicroXercise, which integrates micro-motion analysis with wearable sensors, providing therapists and patients with a comprehensive feedback interface, including video, text, and scores. Crucially, it employs multi-dimensional Dynamic Time Warping (DTW) and attribution-based explainable methods to analyze the existing deep learning neural networks in monitoring exercises, focusing on a high granularity of exercise. This synergistic approach is pivotal, providing output matching the input size to precisely highlight critical subtleties and movements in PT, thus transforming complex AI analysis into clear, actionable feedback. By highlighting these micro-motions in different metrics, such as stability and range of motion, MicroXercise significantly enhances the understanding and relevance of feedback for end-users. Comparative performance metrics underscore its effectiveness over traditional methods, such as a 39% and 42% improvement in Feature Mutual Information (FMI) and Continuity. MicroXercise is a step ahead in home-based physical therapy, providing a technologically advanced and intuitively helpful solution to enhance patient care and outcomes.
Related papers
- Validation of Human Pose Estimation and Human Mesh Recovery for Extracting Clinically Relevant Motion Data from Videos [79.62407455005561]
Marker-less motion capture using human pose estimation produces results in-line with the results of both the IMU and MoCap kinematics.
While there is still room for improvement when it comes to the quality of the data produced, we believe that this compromise is within the room of error.
arXiv Detail & Related papers (2025-03-18T22:18:33Z) - Automatic Temporal Segmentation for Post-Stroke Rehabilitation: A Keypoint Detection and Temporal Segmentation Approach for Small Datasets [2.727171735150599]
Stroke predominantly affects older adults, with 75% of cases occurring in individuals aged 65 and older.
Current assessment methods can often be subjective, inconsistent, and time-consuming.
This study aims to address these challenges by providing a solution for consistent and timely analysis.
arXiv Detail & Related papers (2025-02-27T05:05:52Z) - Detecting Activities of Daily Living in Egocentric Video to Contextualize Hand Use at Home in Outpatient Neurorehabilitation Settings [2.9158689853305693]
We show that an object-centric approach, focusing on what objects patients interact with rather than how they move, can effectively recognize Activities of Daily Living (ADL) in real-world rehabilitation settings.
We evaluated our models on a complex dataset collected in the wild comprising 2261 minutes of egocentric video from 16 participants with impaired hand function.
arXiv Detail & Related papers (2024-12-14T14:38:27Z) - Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment [65.70317151363204]
This work introduces the first framework for reconstructing surgical dialogue from unstructured real-world recordings.
In surgical training, the formative verbal feedback that trainers provide to trainees during live surgeries is crucial for ensuring safety, correcting behavior immediately, and facilitating long-term skill acquisition.
Our framework integrates voice activity detection, speaker diarization, and automated speech recaognition, with a novel enhancement that removes hallucinations.
arXiv Detail & Related papers (2024-12-01T10:35:12Z) - Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
We propose a method that integrates information from transcribed verbal feedback and corresponding surgical video to predict feedback effectiveness.
Our findings show that both transcribed feedback and surgical video are individually predictive of trainee behavior changes.
Our results demonstrate the potential of multi-modal learning to advance the automated assessment of surgical feedback.
arXiv Detail & Related papers (2024-11-17T00:13:00Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
We examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy session via text.
We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods.
arXiv Detail & Related papers (2024-08-27T17:25:16Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
This article addresses four challenges to address and propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises.
The dataset includes 3D Kinect skeleton positions and orientations, RGB videos, 2D skeleton data, and medical annotations to assess the correctness, and error classification and localisation of body part and timespan.
arXiv Detail & Related papers (2024-06-29T19:50:06Z) - Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning [3.972100195623647]
We collected data for 265 stroke patients from the University of Pittsburgh Medical Center.
To identify impactful exercises, we used Chi-square tests, Fisher's exact tests, and logistic regression for odds ratios.
We identified three rehabilitation exercises that significantly contributed to patient post-stroke functional ability improvement.
arXiv Detail & Related papers (2024-05-09T04:06:44Z) - MR-STGN: Multi-Residual Spatio Temporal Graph Network Using Attention
Fusion for Patient Action Assessment [0.3626013617212666]
We propose an automated approach for patient action assessment using a Multi-Residual Spatio Temporal Graph Network (MR-STGN)
The MR-STGN is specifically designed to capture the dynamics of patient actions.
We evaluate our model on the UI-PRMD dataset demonstrating its performance in accurately predicting real-time patient action scores.
arXiv Detail & Related papers (2023-12-21T01:09:52Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - Mimetic Muscle Rehabilitation Analysis Using Clustering of Low
Dimensional 3D Kinect Data [1.53119329713143]
This paper discusses an unsupervised approach to rehabilitating patients who have temporary facial paralysis due to damage in mimetic muscles.
The work aims to make the rehabilitation process objective compared to the current subjective approach, such as House-Brackmann (HB) scale.
The study contains data set of 85 distinct patients with 120 measurements obtained using a Kinect stereo-vision camera.
arXiv Detail & Related papers (2023-02-15T09:45:27Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
We propose Motion Pyramid Networks, a novel deep learning-based approach for accurate and efficient cardiac motion estimation.
We predict and fuse a pyramid of motion fields from multiple scales of feature representations to generate a more refined motion field.
We then use a novel cyclic teacher-student training strategy to make the inference end-to-end and further improve the tracking performance.
arXiv Detail & Related papers (2020-06-28T21:03:19Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z) - Opportunities of a Machine Learning-based Decision Support System for
Stroke Rehabilitation Assessment [64.52563354823711]
Rehabilitation assessment is critical to determine an adequate intervention for a patient.
Current practices of assessment mainly rely on therapist's experience, and assessment is infrequently executed due to the limited availability of a therapist.
We developed an intelligent decision support system that can identify salient features of assessment using reinforcement learning.
arXiv Detail & Related papers (2020-02-27T17:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.