論文の概要: Density Matrices for Metaphor Understanding
- arxiv url: http://arxiv.org/abs/2408.11846v1
- Date: Mon, 12 Aug 2024 11:21:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 13:51:32.197684
- Title: Density Matrices for Metaphor Understanding
- Title(参考訳): メタファー理解のための密度行列
- Authors: Jay Owers, Ekaterina Shutova, Martha Lewis,
- Abstract要約: メタファーを語彙的曖昧さの一種とみなし、単語感覚の混合を用いてメタファー的意味を効果的にモデル化できるかどうかを検討する。
我々の最も優れた密度行列法は、単純なベースラインやいくつかのニューラルネットワークモデルよりも優れています。
- 参考スコア(独自算出の注目度): 12.568794861914451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In physics, density matrices are used to represent mixed states, i.e. probabilistic mixtures of pure states. This concept has previously been used to model lexical ambiguity. In this paper, we consider metaphor as a type of lexical ambiguity, and examine whether metaphorical meaning can be effectively modelled using mixtures of word senses. We find that modelling metaphor is significantly more difficult than other kinds of lexical ambiguity, but that our best-performing density matrix method outperforms simple baselines as well as some neural language models.
- Abstract(参考訳): 物理学では密度行列は混合状態、すなわち純状態の確率的混合を表すために用いられる。
この概念は、以前は語彙の曖昧さをモデル化するために用いられてきた。
本稿では,メタファを語彙的曖昧さの一種とみなし,単語感覚の混合を用いてメタファ的意味を効果的にモデル化できるかどうかを検討する。
モデリングのメタファーは他の語彙的曖昧さよりもはるかに難しいが、我々の最も優れた密度行列法は、単純なベースラインやいくつかのニューラルネットワークモデルよりも優れている。
関連論文リスト
- Conjuring Semantic Similarity [59.18714889874088]
2つのテキスト表現間の意味的類似性は、潜伏者の「意味」の間の距離を測定する
テキスト表現間の意味的類似性は、他の表現を言い換えるのではなく、それらが引き起こすイメージに基づいている、という新しいアプローチを提案する。
提案手法は,人間の注釈付きスコアに適合するだけでなく,テキスト条件付き生成モデル評価のための新たな道を開く意味的類似性に関する新たな視点を提供する。
論文 参考訳(メタデータ) (2024-10-21T18:51:34Z) - That was the last straw, we need more: Are Translation Systems Sensitive
to Disambiguating Context? [64.38544995251642]
我々は、源泉に存在している意味的あいまいさ(本研究における英語)について研究する。
我々は、リテラルと図形の両方にオープンなイディオムに焦点を当てている。
現在のMTモデルは、たとえ文脈が比喩的解釈を示しているとしても、英語のイディオムを文字通りに翻訳する。
論文 参考訳(メタデータ) (2023-10-23T06:38:49Z) - Metaphor Detection via Explicit Basic Meanings Modelling [12.096691826237114]
本稿では,トレーニングセットからのリテラルアノテーションに基づいて,単語の基本的意味をモデル化するメタファ検出手法を提案する。
実験の結果,本手法はF1スコアにおいて,最先端の手法よりも1.0%優れていた。
論文 参考訳(メタデータ) (2023-05-26T21:25:05Z) - LMs stand their Ground: Investigating the Effect of Embodiment in
Figurative Language Interpretation by Language Models [0.0]
表現言語は、その解釈が従来の順序や意味から逸脱しているため、言語モデルの課題である。
しかし、人間がメタファーを理解し解釈するのは、メタファーを具現化したメタファーから導き出すことができるためである。
本研究は、比喩文の動作がより具体化されている場合に、より大きな言語モデルが比喩文の解釈にいかに優れているかを示す。
論文 参考訳(メタデータ) (2023-05-05T11:44:12Z) - Metaphorical Polysemy Detection: Conventional Metaphor meets Word Sense
Disambiguation [9.860944032009847]
言語学者は、NLPのメタファ検出タスクが考慮しない、新しいメタファと従来のメタファを区別する。
本稿では,従来のメタファをこのような方法で扱う際の限界について検討する。
我々は、英語のWordNetにおける従来のメタファーを識別する最初のMPDモデルを開発した。
論文 参考訳(メタデータ) (2022-12-16T10:39:22Z) - It's not Rocket Science : Interpreting Figurative Language in Narratives [48.84507467131819]
我々は2つの非構成的図形言語(イディオムとシミュラ)の解釈を研究する。
実験の結果、事前学習された言語モデルのみに基づくモデルは、これらのタスクにおいて人間よりもはるかにひどい性能を示すことがわかった。
また, 知識強化モデルを提案し, 具体的言語を解釈するための人的戦略を採用した。
論文 参考訳(メタデータ) (2021-08-31T21:46:35Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
我々は、関連する動詞を置き換えることで、リテラル表現を与えられた比喩文を生成することを目指している。
本稿では,認知領域間の概念マッピングを符号化することで生成過程を制御することを提案する。
教師なしCM-Lexモデルは,近年のディープラーニングメタファ生成システムと競合することを示す。
論文 参考訳(メタデータ) (2021-06-02T15:27:05Z) - MERMAID: Metaphor Generation with Symbolism and Discriminative Decoding [22.756157298168127]
メタファーとシンボル間の理論的に基底的な接続に基づいて,並列コーパスを自動構築する手法を提案する。
生成タスクには、並列データに微調整されたシーケンスモデルへのシーケンスの復号を導くためのメタファ判別器を組み込んだ。
課題に基づく評価では、比喩のない詩に比べて、比喩で強化された人文詩が68%の時間を好むことが示されている。
論文 参考訳(メタデータ) (2021-03-11T16:39:19Z) - Lexical semantic change for Ancient Greek and Latin [61.69697586178796]
歴史的文脈における単語の正しい意味の連想は、ダイアクロニック研究の中心的な課題である。
我々は、動的ベイズ混合モデルに基づくセマンティック変化に対する最近の計算的アプローチに基づいて構築する。
本研究では,動的ベイズ混合モデルと最先端埋め込みモデルとのセマンティックな変化を系統的に比較する。
論文 参考訳(メタデータ) (2021-01-22T12:04:08Z) - Modelling Lexical Ambiguity with Density Matrices [3.7692411550925664]
コーパスから密度行列を学習するための3つの新しいニューラルモデルを提案する。
様々な構成データセットで単語感覚を識別する能力をテストする。
論文 参考訳(メタデータ) (2020-10-12T13:08:45Z) - Metaphoric Paraphrase Generation [58.592750281138265]
クラウドソーシングを用いてその結果を評価し,メタファー的パラフレーズを評価するための自動指標を開発する。
語彙置換ベースラインは正確なパラフレーズを生成できるが、比喩的でないことが多い。
メタファーマスキングモデルでは,メタファー文の生成に優れ,流布やパラフレーズの品質に関してはほぼ同等に機能する。
論文 参考訳(メタデータ) (2020-02-28T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。