論文の概要: Automated Synthesis of Fault-Tolerant State Preparation Circuits for Quantum Error Correction Codes
- arxiv url: http://arxiv.org/abs/2408.11894v1
- Date: Wed, 21 Aug 2024 18:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 18:16:33.385994
- Title: Automated Synthesis of Fault-Tolerant State Preparation Circuits for Quantum Error Correction Codes
- Title(参考訳): 量子誤り訂正符号のためのフォールトトレラント状態準備回路の自動合成
- Authors: Tom Peham, Ludwig Schmid, Lucas Berent, Markus Müller, Robert Wille,
- Abstract要約: 任意のCSSコードに対するフォールトトレラントな状態準備回路の自動化手法を提案する。
距離3を超える非決定論的状態準備回路の一般構成を提供する。
結果として得られたメソッドは、ミュンヘン量子ツールキットの一部として公開されている。
- 参考スコア(独自算出の注目度): 4.2955091080396075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central ingredient in fault-tolerant quantum algorithms is the initialization of a logical state for a given quantum error-correcting code from a set of noisy qubits. A scheme that has demonstrated promising results for small code instances that are realizable on currently available hardware composes a non-fault-tolerant state preparation step with a verification step that checks for spreading errors. Known circuit constructions of this scheme are mostly obtained manually, and no algorithmic techniques for constructing depth- or gate-optimal circuits exist. As a consequence, the current state of the art exploits this scheme only for specific code instances and mostly for the special case of distance 3 codes. In this work, we propose an automated approach for synthesizing fault-tolerant state preparation circuits for arbitrary CSS codes. We utilize methods based on satisfiability solving (SAT) techniques to construct fault-tolerant state preparation circuits consisting of depth- and gate-optimal preparation and verification circuits. We also provide heuristics that can synthesize fault-tolerant state preparation circuits for code instances where no optimal solution can be obtained in an adequate timeframe. Moreover, we give a general construction for non-deterministic state preparation circuits beyond distance 3. Numerical evaluations using $d=3$ and $d=5$ codes confirm that the generated circuits exhibit the desired scaling of the logical error rates. The resulting methods are publicly available as part of the Munich Quantum Toolkit (MQT) at https://github.com/cda-tum/mqt-qecc. Such methods are an important step in providing fault-tolerant circuit constructions that can aid in near-term demonstration of fault-tolerant quantum computing.
- Abstract(参考訳): フォールトトレラント量子アルゴリズムの主要な要素は、与えられた量子誤り訂正符号に対する論理状態の初期化である。
現在利用可能なハードウェア上で実現可能な小さなコードインスタンスの有望な結果を実証したスキームは、エラーの拡散をチェックする検証ステップを備えた、フォールトトレラントな状態準備ステップを構成する。
この方式の既知の回路構成は、主に手動で得られ、深さ最適化回路やゲート最適化回路を構築するアルゴリズム技術は存在しない。
結果として、現在の最先端技術はこのスキームを特定のコードインスタンスにのみ利用し、主に距離3コードの特殊なケースに利用している。
本研究では,任意のCSSコードに対してフォールトトレラントな状態準備回路を合成するための自動アプローチを提案する。
本研究では,SAT法を応用して,深度・ゲート最適準備・検証回路からなる耐故障状態準備回路を構築する。
また,適切な時間枠で最適解が得られないコードインスタンスに対して,フォールトトレラントな状態準備回路を合成できるヒューリスティックスも提供する。
さらに、距離3を超える非決定論的状態準備回路の一般的な構成を与える。
$d=3$および$d=5$符号を用いた数値評価により、生成された回路が論理誤差率の望ましいスケーリングを示すことを確認した。
得られたメソッドは、 https://github.com/cda-tum/mqt-qecc.com/mqt-qeccのミュンヘン量子ツールキット(MQT)の一部として公開されている。
このような手法は、フォールトトレラントな量子コンピューティングの短期的な実証に役立つ、フォールトトレラントな回路構成を提供するための重要なステップである。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
フォールトトレラント量子コンピューティングでは、量子アルゴリズムは誤り訂正が可能な量子回路によって実装される。
本稿では,フォールトトレラント量子回路の設計と解析を行うツールキットを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:56:38Z) - Transversal Injection: Using the Surface Code to Prepare Non-Pauli Eigenstates [37.94431794242543]
QEC(Quantum Error Correction)により、多数の物理量子ビットと好ましい論理的誤り率を持つシステムを使用することができる。
トランスバーサル・インジェクション(Transversal Injection)は、量子計算のリソース状態として使用できる論理的非パウリゲン領域を作成する新しい方法である。
論文 参考訳(メタデータ) (2023-12-27T03:32:03Z) - Measurement-free fault-tolerant quantum error correction in near-term
devices [0.0]
キュービットを測定する必要なしにQECサイクルを実行するための新しいスキームを提供する。
フラグキュービットベースのECサイクルと比較して,提案方式の論理的故障率をベンチマークする。
イオントラップや中性原子をツイーザーアレイで実装する方法について概説する。
論文 参考訳(メタデータ) (2023-07-25T07:22:23Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
幾何学的符号に基づく普遍的フォールトトレラント量子コンピューティングを実現するための量子回路合成アルゴリズムを提案する。
我々は、一般的なフォールトトレラントプロトコルのセットを$[[[7,1,3]]$ Steaneコードで合成する方法と、症候群測定プロトコルを$[[23, 1, 7]$ Golayコードで合成する方法を示す。
論文 参考訳(メタデータ) (2022-06-06T15:43:36Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Low-overhead pieceable fault-tolerant construction of logical
controlled-phase circuit for degenerate quantum code [11.106110829349221]
我々は、量子コードのための論理制御相ゲートの非可逆かつフォールトトレラントな構成を探索する。
この符号には3ピースのフォールトトレラントな論理CZ回路がある。
論文 参考訳(メタデータ) (2021-05-15T04:06:12Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
本稿では量子回路マッピングQXXとその機械学習バージョンQXX-MLPを紹介する。
後者は、レイアウトされた回路の深さが小さくなるように最適なQXXパラメータ値を自動的に推論する。
近似を用いてレイアウト法を学習可能な経験的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T05:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。